Skip to main content
Log in

The Superconducting Phase Diagram of ThFe1−xNixAsN

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Differently from most of the other 1111-type iron-based superconductors (IBSCs), ThFeAsN without an antiferromagnetic order shows superconductivity at 30 K in the absence of chemical doping and other treating. In order to enhance its superconductivity and understand its peculiar superconducting behaviour, it is necessary to investigate the evolution of the superconducting phase through electron doping, especially heavy electron doping. Chemically, the doping of Ni is an effective way to realize heavy electron doping, as Ni atoms have two more 3d electrons than Fe atoms and electrons could be doped directly into the FeAs planes. As is known that ThFeAsN is a kind of unconventional superconductor, while ThNiAsN is a kind of conventional superconductor, then if ThFeAsN is doped with Ni to form ThFe1−xNixAsN, some intriguing behaviours such as the phase transition from unconventional superconductivity to conventional superconductivity may be observed. Here, we have synthesized ThFe1−xNixAsN with 0.01 ≤ x ≤ 1. It is found that, with doping of Ni, the superconductivity of ThFeAsN is suppressed quickly. For ThNiAsN resynthesized by us, its Tc is 4.8 K, which is higher than the previously reported value of Tc = 4.3 K. The superconducting phase diagram of ThFe1−xNixAsN is drawn to summarize the doping results. Considering the other electron doping results of ThFeAsN1−xOx and ThFe1−xCoxAsN, it can be concluded that the electron doping is not an effective way to increase the Tc of ThFeAsN. The hole doping result is expected. Being associated with the previous results, it can be concluded that the superconductivity of ThFeAsN is much more sensitive to in-plane disorder than that of doped LaFeAsO, which reveals again that their superconductivity mechanisms are really different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Albedah, M.A., Nejadsattari, F., Stadnik, Z.M., Wang, Z.-C., Wang, C., Cao, G.-H.: Absence of the stripe antiferromagnetic order in the new 30k superconductor ThFeAsN. J. Alloys Compd. 695, 1128–1136 (2017)

    Article  Google Scholar 

  2. Mao, H., Wang, C., Maynard-Casely, H.E., Huang, Q., Wang, Z., Cao, G., Li, S., Luo, H.: Neutron powder diffraction study on the iron-based nitride superconductor ThFeAsN. EPL Europhy. Lett. 117 (5), 57005 (2017)

    Article  ADS  Google Scholar 

  3. Shiroka, T., Shang, T., Wang, C., Cao, G.-H., Eremin, I., Ott, H.-R., Mesot, J.: High-Tc superconductivity in undoped ThFeAsN. Nat. Commun. 8(1), 1–6 (2017)

    Article  Google Scholar 

  4. Hosono, H., Yamamoto, A., Hiramatsu, H., Ma, Y.: Recent advances in iron-based superconductors toward applications. Mater. Today 21(3), 278–302 (2018)

    Article  Google Scholar 

  5. Wang, G., Shi, X.: Electronic structure and magnetism of ThFeAsN. EPL Europhy. Lett. 113 (6), 67006 (2016)

    Article  ADS  Google Scholar 

  6. Wang, C., Wang, Z.-C., Mei, Y.-X., Li, Y.-K., Li, L., Tang, Z.-T., Liu, Y., Zhang, P., Zhai, H.-F., Xu, Z.-A., et al.: A new ZrCuSiAs-type superconductor:ThFeAsN. J. Am. Chem. Soc. 138(7), 2170–2173 (2016)

    Article  Google Scholar 

  7. Zhu, X., Han, F., Cheng, P., Mu, G., Shen, B., Fang, L., Wen, H.-H.: Superconductivity in fluoride-arsenide Sr1−xLaxFeAsF compounds. EPL Europhy. Lett. 85(1), 17011 (2009)

    Article  ADS  Google Scholar 

  8. Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: Iron-based layered superconductor La[O1−xFx]FeAs(x = 0.05-0.12) with Tc= 26 k. J. Am. Chem. Soc. 130(11), 3296–3297 (2008)

    Article  Google Scholar 

  9. Zhao, J., Huang, Q., De La Cruz, C., Li, S., Lynn, J.W., Chen, Y., Green, M.A., Chen, G.F., Li, G., Li, Z., et al.: Structural and magnetic phase diagram of CeFeAsO1−xFx and its relation to high-temperature superconductivity. Nat. Mater. 7(12), 953–959 (2008)

    Article  ADS  Google Scholar 

  10. Sefat, A.S., Huq, A., McGuire, M.A., Jin, R., Sales, B.C., Mandrus, D., Cranswick, L.M.D., Stephens, P.W., Stone, K.H.: Superconductivity in LaFe1−xCoxAsO. Phys. Rev. B 78(10), 104505 (2008)

    Article  ADS  Google Scholar 

  11. Xiao, Y., Su, Y., Mittal, R., Chatterji, T., Hansen, T., Kumar, C.M.N., Matsuishi, S., Hosono, H., Brueckel, T.: Magnetic order in the CaFe1−xCoxAsF (x = 0.00, 0.06, 0.12) superconducting compounds. Phys. Rev. B 79(6), 060504 (2009)

    Article  ADS  Google Scholar 

  12. Cao, G., Jiang, S., Lin, X., Wang, C., Li, Y., Ren, Z., Tao, Q., Feng, C., Dai, J., Xu, Z., et al.: Narrow superconducting window in LaFe1−xNixAsO. Phys. Rev. B 79(17), 174505 (2009)

    Article  ADS  Google Scholar 

  13. Zhang, Y., Chen, Y.L., Cheng, C.H., Cui, Y.J., Zhang, H., Zhao, Y.: Investigation on the electronic structure of fe-based superconductor SmFe1−xIrxAsO. J. Supercond. Nov. Magn. 23(6), 1015–1019 (2010)

    Article  Google Scholar 

  14. Wang, J., Jiao, F., Wang, X., Zhu, S., Cai, L., Yang, C., Song, P., Zhang, F., Li, B., Li, Y., et al.: The phase transition of ThFe1−xCoxAsN from superconductor to metallic paramagnet. EPL Europhy. Lett. 130(6), 67003 (2020)

    Article  ADS  Google Scholar 

  15. Jiang, S., Wang, C., He, M., Yu, J., Tao, Q., Dai, J.H., Xu, Z.A., Cao, G.H.: Extended phase diagram in LaFe1−xNixAsO. Phys. C Supercond. Appl. 470, S456–S457 (2010)

    Article  ADS  Google Scholar 

  16. Stewart, G.R.: Superconductivity in iron compounds. Rev. Mod. Phys. 83(4), 1589 (2011)

    Article  ADS  Google Scholar 

  17. Wang, Z.-C., Shao, Y.-T., Wang, C., Wang, Z., Xu, Z.-A., Cao, G.-H.: Enhanced superconductivity in ThNiAsN. EPL Europhy. Lett. 118(5), 57004 (2017)

    Article  ADS  Google Scholar 

  18. Wang, C., Li, Y.K., Zhu, Z.W., Jiang, S., Lin, X., Luo, Y.K., Chi, S., Li, L.J., Ren, Z., He, M., et al.: Effects of cobalt doping and phase diagrams of LFe1−xCoxAsO (L= La and Sm). Phys. Rev. B 79(5), 054521 (2009)

    Article  ADS  Google Scholar 

  19. Ebrahimi, M.R., Khosroabadi, H.: Effects of fluorine doping and pressure on the electronic structure of LaO1−xFxFeAs superconductor: a first principle study. J. Supercond. Nov. Magn. 30(8), 2065–2071 (2017)

    Article  Google Scholar 

  20. Li, B.-Z., Wang, Z.-C., Wang, J.-L., Zhang, F.-X., Wang, D.-Z., Zhang, F.-Y., Sun, Y.-P., Jing, Q., Zhang, H.-F., Tan, S.-G., et al.: Peculiar phase diagram with isolated superconducting regions in ThFeAsN1−xOx. J. Phys. Condens. Matter 30(25), 255602 (2018)

    Article  ADS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant No. 11804194) and Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2016AQ08, ZR2019MA036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Jing, Cao Wang or Bo Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Editors Pick

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 192 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, F., Wang, X., Wang, J. et al. The Superconducting Phase Diagram of ThFe1−xNixAsN. J Supercond Nov Magn 34, 409–415 (2021). https://doi.org/10.1007/s10948-020-05660-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05660-6

Keywords

Navigation