Theoretical Study of a Tunable Low-Temperature Photonic Crystal Sensor Using Dielectric-Superconductor Nanocomposite Layers


One-dimensional hybrid photonic crystal made of a superconductor (YBa2Cu3O7) nanocomposite and dielectric material (silicon) is theoretically investigated by the two-fluid model and the transfer matrix method based on Tamm resonance. The structure consists of a ternary photonic crystal capped by metallic layer Ag. Interesting multi-photonic band gaps are achieved for a suitable hybrid periodic system. The characteristic of these multi-photonic band gaps can be manipulated by the temperature of the system. The proposed sensor records high sensitivity (from 1.1 to 2.2 nm/K), very high signal-to-noise (from 24 to 125), and low resolution (from 0.11 to 0.14). Compared with previous works, our proposed sensor can achieve high sensitivity for near-zero (K) temperature sensing.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Ahmed, A.M., Shaban, M., Aly, A.H.: Electro-optical tenability properties of defective one-dimensional photonic crystal. Optik. 145, 121–129 (2017)

    ADS  Google Scholar 

  2. 2.

    Shaban, S.M., Mehaney, A., Aly, A.H.: Determination of 1-propanol, ethanol, and methanol concentrations in water based on a one-dimensional phoxonic crystal sensor. Appl. Opt. 59(13), 3878–3885 (2020)

    ADS  Google Scholar 

  3. 3.

    Aly, A.H., Sayed, F.A.: THz cutoff frequency and multifunction Ti2Ba2Ca2Cu3O10/GaAs photonic bandgap materials. Int. J. Mod. Phys. B. 2050091 (2020)

  4. 4.

    Yablonovitch, E.: Photonic crystals: semiconductors of light. Sci. Am. 285(6), 46–55 (2001)

    Google Scholar 

  5. 5.

    Aly, A.H., Zaky, Z.A., Shalaby, A.S., Ahmed, A.M., Vigneswaran, D.: Theoretical study of hybrid multifunctional one-dimensional photonic crystal as a flexible blood sugar sensor. Phys. Scr. 95(3), 035510 (2020)

    Google Scholar 

  6. 6.

    Auguié, B., Fuertes, M.C., Angelomé, P.C., Abdala, N.L., Soler Illia, G.J., Fainstein, A.: Tamm plasmon resonance in mesoporous multilayers: toward a sensing application. ACS Photonics. 1(9), 775–780 (2014)

    Google Scholar 

  7. 7.

    Kaliteevski, M., Iorsh, I., Brand, S., Abram, R., Chamberlain, J., Kavokin, A., Shelykh, I.: Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys. Rev. B. 76(16), 165415 (2007)

    ADS  Google Scholar 

  8. 8.

    Kumar, S., Das, R.: On the tunability of quality-factor for optical Tamm plasmon modes. J. Opt. 19(9), 095001 (2017)

    ADS  Google Scholar 

  9. 9.

    Kumar, S., Maji, P.S., Das, R.: Tamm-plasmon resonance based temperature sensor in a Ta2O5/SiO2 based distributed Bragg reflector. Sens. Actuator A Phys. 260, 10–15 (2017)

    Google Scholar 

  10. 10.

    Ahmed, A.M., Mehaney, A.: Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region. Sci. Rep. 9(1), 6973 (2019)

    ADS  Google Scholar 

  11. 11.

    Aly, A.H., Zaky, Z.A.: Ultra-sensitive photonic crystal cancer cells sensor with a high-quality factor. Cryogenics. 104, 102991 (2019)

    Google Scholar 

  12. 12.

    Bisi, O., Ossicini, S., Pavesi, L.: Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf. Sci. Rep. 38(1–3), 1–126 (2000)

    ADS  Google Scholar 

  13. 13.

    Zaky, Z.A., Ahmed, A.M., Shalaby, A.S., Aly, A.H.: Refractive index gas sensor based on the Tamm state in a one-dimensional photonic crystal: theoretical optimisation. Sci. Rep. 10(1), 9736 (2020)

    Google Scholar 

  14. 14.

    Wang, Z., Zhang, J., Xu, S., Wang, L., Cao, Z., Zhan, P., Wang, Z.: 1D partially oxidized porous silicon photonic crystal reflector for mid-infrared application. J. Phys. D. 40(15), 4482 (2007)

    ADS  Google Scholar 

  15. 15.

    Prestidge, C.A., Barnes, T., Mierczynska-Vasilev, A., Kempson, I., Peddie, F., Barnett, C.: Peptide and protein loading into porous silicon wafers. Phys. Status Solidi. 205(2), 311–315 (2008)

    ADS  Google Scholar 

  16. 16.

    Banerjee, A.: Enhanced temperature sensing by using one-dimensional ternary photonic band gap structures. Prog. Electromagn. Res. 11, 129–137 (2009)

    Google Scholar 

  17. 17.

    El-Amassi, D.M., Taya, S.A., Ramanujam, N.R., Vigneswaran, D., Udaiyakumar, R.: Extension of energy band gap in ternary photonic crystal using left-handed materials. Superlattice. Microst. 120, 353–362 (2018)

    ADS  Google Scholar 

  18. 18.

    Abadla, M.M., Tabaza, N.A., Tabaza, W., Ramanujam, N., Wilson, K.J., Vigneswaran, D., Taya, S.A.: Properties of ternary photonic crystal consisting of dielectric/plasma/dielectric as a lattice period. Optik. 185, 784–793 (2019)

    ADS  Google Scholar 

  19. 19.

    Awasthi, S.K., Malaviya, U., Ojha, S.P.: Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material. J. Opt. Soc. Am. B. 23(12), 2566–2571 (2006)

    ADS  Google Scholar 

  20. 20.

    Sharma, S., Kumar, R., Singh, K.S., Kumar, A.: Temperature dependence of ODR range at 1550nm using 1D binary and ternary photonic crystals. J. Optoelectron. Adv. Mater. 19(5–6), 319–324 (2017)

    Google Scholar 

  21. 21.

    Awasthi, S.K., Ojha, S.P.: Design of a tunable optical filter by using a one-dimensional ternary photonic band gap material. Prog. Electromagn. Res. 4, 117–132 (2008)

    Google Scholar 

  22. 22.

    El-Amassi, D.M., Taya, S.A., Vigneswaran, D.: Temperature sensor utilizing a ternary photonic crystal with a polymer layer sandwiched between Si and SiO2 layers. JTAP. 12(4), 293–298 (2018)

    ADS  Google Scholar 

  23. 23.

    Srivastava, S.K.: Study of defect modes in 1d photonic crystal structure containing high and low Tc superconductor as a defect layer. J. Supercond. Nov. Magn. 27(1), 101–114 (2014)

    Google Scholar 

  24. 24.

    Aly, A.H., Mohamed, D., Mohaseb, M.: Theoretical and simulation study in defective semiconductor layer that incorporated with superconducting-dielectric photonic crystal. Int. J. Mod. Phys. B. 33(32), 1950397 (2019)

    ADS  Google Scholar 

  25. 25.

    Sreejith, K., D’souza, N.M., Mathew, V.: Analysis of cutoff frequency in one dimensional ternary superconducting photonic crystal. Physica C. 540, 44–47 (2017)

    ADS  Google Scholar 

  26. 26.

    Aly, A.H., Ghany, S.-S.A., Kamal, B., Vigneswaran, D.: Theoretical studies of hybrid multifunctional YaBa2Cu3O7 photonic crystals within visible and infra-red regions. Ceram. Int. 46(1), 365–369 (2020)

    Google Scholar 

  27. 27.

    Aly, A.H., Ameen, A.A., Elsayed, H.A., Mohamed, S., Singh, M.R.: One-dimensional metallo-superconductor photonic crystals as a smart window. J. Supercond. Nov. Magn. 32(8), 2313–2318 (2019)

    Google Scholar 

  28. 28.

    Aly, A.H., Ryu, S.-W., Hsu, H.-T., Wu, C.-J.: THz transmittance in one-dimensional superconducting nanomaterial-dielectric superlattice. Mater. Chem. Phys. 113(1), 382–384 (2009)

    Google Scholar 

  29. 29.

    Aly, A.H., Ameen, A.A., Vigneswaran, D.: Superconductor nanometallic photonic crystals as a novel smart window for low-temperature applications. J. Supercond. Nov. Magn. 32(2), 191–197 (2019)

    Google Scholar 

  30. 30.

    Pavesi, L.: Porous silicon dielectric multilayers and microcavities. Riv. del Nuovo Cim. 20(10), 1 (1997)

    Google Scholar 

  31. 31.

    Harraz, F.A.: Porous silicon chemical sensors and biosensors: a review. Sens. Actuators B Chem. 202, 897–912 (2014)

    Google Scholar 

  32. 32.

    Dang, Z., Banas, A., Azimi, S., Song, J., Breese, M., Yao, Y., Turaga, S.P., Recio-Sánchez, G., Bettiol, A., Van Kan, J.: Silicon and porous silicon mid-infrared photonic crystals. Appl. Phys. A Mater. Sci. Process. 112(3), 517–523 (2013)

    ADS  Google Scholar 

  33. 33.

    Rasson, J., Poncelet, O., Mouchet, S.R., Deparis, O., Francis, L.A.: Vapor sensing using a bio-inspired porous silicon photonic crystal. Mater. Today Proc. 4, 5006–5012 (2017)

    Google Scholar 

  34. 34.

    Aly, A.H.: Metallic and superconducting photonic crystal. J. Supercond. Nov. Magn. 21(7), 421 (2008)

    Google Scholar 

  35. 35.

    Aly, A.H., Ismaeel, M., Abdel-Rahman, E.: Comparative study of the one-dimensional dielectric and metallic photonic crystals. OPJ. 2(02), 105 (2012)

    ADS  Google Scholar 

  36. 36.

    Ujihara, K.: Reflectivity of metals at high temperatures. J. Appl. Phys. 43(5), 2376–2383 (1972)

    ADS  Google Scholar 

  37. 37.

    Celanovic, I., Perreault, D., Kassakian, J.: Resonant-cavity enhanced thermal emission. Phys. Rev. B. 72(7), 075127 (2005)

    ADS  Google Scholar 

  38. 38.

    Gharaati, A., Zare, Z.: The effect of temperature on one-dimensional nanometallic photonic crystals with coupled defects. Pramana. 88(5), 75 (2017)

    ADS  Google Scholar 

  39. 39.

    Ooi, C.R., Yeung, T.A., Kam, C., Lim, T.: Photonic band gap in a superconductor-dielectric superlattice. Phys. Rev. B. 61(9), 5920 (2000)

    ADS  Google Scholar 

  40. 40.

    Kumar, A., Kumar, V., Suthar, B., Bhargava, A., Singh, K.S., Ojha, S.: Wide range temperature sensors based on one-dimensional photonic crystal with a single defect. Int. J. Microw. Sci. Technol. 2012, 1 (2012)

    Google Scholar 

  41. 41.

    Aly, A.H., Elsayed, H.A., Malek, C.: Defect modes properties in one-dimensional photonic crystals employing a superconducting nanocomposite material. Opt. Appl. 48(1), (2018)

  42. 42.

    Almadhoun, M.N., Bhansali, U.S., Alshareef, H.N.: Nanocomposites of ferroelectric polymers with surface-hydroxylated BaTiO 3 nanoparticles for energy storage applications. J. Mater. Chem. 22(22), 11196–11200 (2012)

    Google Scholar 

  43. 43.

    Qiao, J., Yang, C.Y.: High-Tc superconductors on buffered silicon: materials properties and device applications. Mater. Sci. Eng. R. Rep. 14(4), 157–201 (1995)

    Google Scholar 

  44. 44.

    Koren, G., Polturak, E., Fisher, B., Cohen, D., Kimel, G.: Highly oriented as-deposited superconducting laser ablated thin films of Y1Ba2Cu3O7−δ on SrTiO3, zirconia, and Si substrates. Appl. Phys. Lett. 53(23), 2330–2332 (1988)

    ADS  Google Scholar 

  45. 45.

    Singh, R., Sinha, S., Hsu, N., Chou, P.: In situ deposition of BaF2 as a buffer layer and the superconducting thin films of Y-Ba-Cu-O on silicon substrates by metal organic chemical vapor deposition. J. Appl. Phys. 67(8), 3764–3766 (1990)

    ADS  Google Scholar 

  46. 46.

    Bouteloup, E., Hervieu, M., Mercey, B., Murray, H., Poullain, G., Raveau, B., Rouillon, T.: Characterization of superconducting thin film growth on silicon substrates. J. Cryst. Growth. 91(3), 418–422 (1988)

    ADS  Google Scholar 

  47. 47.

    Mechin, L., Villégier, J.-C., Langlois, P., Robbes, D., Bloyet, D.: Sensitive IR bolometers using superconducting YBaCuO air bridges on micromachined silicon substrates. Sens. Actuator A Phys. 55(1), 19–23 (1996)

    Google Scholar 

  48. 48.

    Aly, A.H., Ryu, S.-W., Wu, C.-J.: Electromagnetic wave propagation characteristics in a one-dimensional metallic photonic crystal. J. Nonlinear Opt. Phys. 17(03), 255–264 (2008)

    Google Scholar 

  49. 49.

    O’Sullivan, F., Celanovic, I., Jovanovic, N., Kassakian, J., Akiyama, S., Wada, K.: Optical characteristics of one-dimensional Si∕SiO2 photonic crystals for thermophotovoltaic applications. J. Appl. Phys. 97(3), 033529 (2005)

    ADS  Google Scholar 

  50. 50.

    Van der Marel, D., Bauer, M., Brandt, E., Habermeier, H.-U., Heitmann, D., König, W., Wittlin, A.: Infrared observation of two-fluid superconductivity in YBa2Cu3O7−x. Phys. Rev. B. 43(10), 8606 (1991)

    ADS  Google Scholar 

  51. 51.

    Gaspar-Armenta, J.A., Villa, F.: Photonic surface-wave excitation: photonic crystal–metal interface. JOSA B. 20(11), 2349–2354 (2003)

    ADS  Google Scholar 

  52. 52.

    El-Khozondar, H.J., Mahalakshmi, P., El-Khozondar, R.J., Ramanujam, N., Amiri, I., Yupapin, P.: Design of one-dimensional refractive index sensor using ternary photonic crystal waveguide for plasma blood samples applications. Physica E Low Dimens. Syst. 111, 29–36 (2019)

    Google Scholar 

  53. 53.

    Ayyanar, N., Raja, G.T., Sharma, M., Kumar, D.S.: Photonic crystal fiber-based refractive index sensor for early detection of cancer. IEEE Sensors J. 18(17), 7093–7099 (2018)

    ADS  Google Scholar 

  54. 54.

    Abadla, M.M., Elsayed, H.A.: Detection and sensing of hemoglobin using one-dimensional binary photonic crystals comprising a defect layer. Appl. Opt. 59(2), 418–424 (2020)

    ADS  Google Scholar 

  55. 55.

    James, S.W., Tatam, R.P., Twin, A., Morgan, M., Noonan, P.: Strain response of fibre Bragg grating sensors at cryogenic temperatures. Meas. Sci. Technol. 13(10), 1535 (2002)

    ADS  Google Scholar 

  56. 56.

    Rajini-Kumar, R., Suesser, M., Narayankhedkar, K., Krieg, G., Atrey, M.: Performance evaluation of metal-coated fiber Bragg grating sensors for sensing cryogenic temperature. Cryogenics. 48(3–4), 142–147 (2008)

    ADS  Google Scholar 

  57. 57.

    Zaynetdinov, M., See, E.M., Geist, B., Ciovati, G., Robinson, H.D., Kochergin, V.: A fiber Bragg grating temperature sensor for 2–400 K. IEEE Sensors J. 15(3), 1908–1912 (2014)

    ADS  Google Scholar 

  58. 58.

    Wu, J.-J., Gao, J.-X.: Low temperature sensor based on one-dimensional photonic crystals with a dielectric-superconducting pair defect. Optik. 126(24), 5368–5371 (2015)

    ADS  Google Scholar 

  59. 59.

    Baraket, Z., Zaghdoudi, J., Kanzari, M.: Investigation of the 1D symmetrical linear graded superconductor-dielectric photonic crystals and its potential applications as an optimized low temperature sensors. Opt. Mater. 64, 147–151 (2017)

    ADS  Google Scholar 

  60. 60.

    Soltani, A., Ouerghi, F., AbdelMalek, F., Haxha, S.: Comparative study of one-dimensional photonic crystal heterostructure doped with a high and low-transition temperature superconducting for a low-temperature sensor. Opt. Commun. 445, 268–272 (2019)

    ADS  Google Scholar 

Download references

Author information




ZA Zaky devised the original idea for the study, performed numerical simulations, and wrote the main manuscript text. AH Aly discussed the results and supervised this work. All authors contributed to the final manuscript.

Corresponding author

Correspondence to Zaky A. Zaky.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zaky, Z.A., Aly, A.H. Theoretical Study of a Tunable Low-Temperature Photonic Crystal Sensor Using Dielectric-Superconductor Nanocomposite Layers. J Supercond Nov Magn (2020).

Download citation


  • Photonic crystal
  • Superconductor
  • Nanocomposite
  • Temperature sensor
  • Tamm resonance
  • Sensitivity