Disordering Induced Second Magnetization Peak Effect and the Vortex Pinning Mechanism in V0.0007NbSe2 Single Crystal

Abstract

The consequences of the random pinning in the presence of weak disorder are studied systematically based on the appearance of the second magnetization peak (SMP) and peak effect in the magnetic measurement. Here, we have observed the system dependency of the SMP effect. We have analysed the dc magnetization curves and the associated vortex pinning mechanisms of V0.0007NbSe2 single crystal at different temperatures and magnetic fields to estimate its pinning strengths in the external magnetic field H oriented parallel to the crystallographic ab plane. The characteristics of critical current density result in the presence of weak collective pinning near zero-magnetic field and the large bundle collective pinning along with SMP effect at the intermediate magnetic fields. The field dependence characteristics of the pinning force density highlights the presence of Bean-Livingstone’s zero-field peak with the presence of intermediate peak and high-field peak effect phenomena. The temperature dependence of the critical current density shows the dominating nature of δl pinning in the intermediate fields region. The vortex phase diagram of V0.0007NbSe2 is drawn showing different vortex phases at altered temperatures and magnetic fields. Thus, this study depicts the SMP effect and the diverse pinning characteristics in the quasi-two-dimensional superconductor associated with the external defects.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Ertas, D., Kardar, M.: Anisotropic scaling in depinning of a flux line. Phys. Rev. Lett. 73, 1703–1706 (1994)

    ADS  Article  Google Scholar 

  2. 2.

    Nelson, D.R., Vinokur, V.M.: Boson localization and correlated pinning of superconducting vortex arrays. Phys. Rev. B. 48, 13060–13097 (1993)

    ADS  Article  Google Scholar 

  3. 3.

    Si, W., Han, S.J., Shi, X., Ehrlich, S.N., Jaroszynski, J., Goyal, A., Li, Q.: High current superconductivity in FeSe0.5Te0.5-coated conductors at 30 tesla. Nat. Commun. 4, 1347 (2013)

    ADS  Article  Google Scholar 

  4. 4.

    Devoret, M.H., Schoelkopf, R.J.: Superconducting circuits for quantum information: an outlook. Science. 339, 1169–1174 (2013)

    ADS  Article  Google Scholar 

  5. 5.

    Welp, U., Kodawaki, K., Kleiner, R.: Superconducting emitters of THz radiation. Nat. Photon. 7, 702–710 (2013)

    ADS  Article  Google Scholar 

  6. 6.

    Gurevich, A., Ciovati, G.: Dynamics of vortex penetration, jumpwise instabilities, and nonlinear surface resistence of type-II superconductors in strong rf fields. Phys. Rev. B. 77, 104501 (2008)

    ADS  Article  Google Scholar 

  7. 7.

    Bonura, M., Giannini, E., Viennois, R., Senatore, C.: Temperature and time scaling of the peak-effect vortex configuration in FeTe0.7Se0.3. Phys. Rev. B. 85, 134532 (2012)

    ADS  Article  Google Scholar 

  8. 8.

    Miu, L., Adachi, T., Omori, K., Koike, Y., Miu, D.: Temperature dependence of the second magnetization peak in underdoped La2-xSrxCuO4 single crystals. Phys. Rev. B. 82, 064520 (2010)

    ADS  Article  Google Scholar 

  9. 9.

    Pramanik, A.K., Harnagea, L., Nacke, C., Wolter, A.U.B., Wurmehl, S., Kataev, V., Buchner, B.: Fishtail effect and vortex dynamics in LiFeAs single crystals. Phys. Rev. B. 83, 094502 (2011)

    ADS  Article  Google Scholar 

  10. 10.

    Elbaum, L.K., Civale, L., Vinokur, V.M., Holtzberg, F.: “Phase diagram” of the vortex-solid phase in Y-Ba-Cu-O crystals: a crossover from single-vortex (1D) to (3D) pinning regimes. Phys. Rev. Lett. 69, 2280 (1992)

    ADS  Article  Google Scholar 

  11. 11.

    Wu, Z.F., Wang, Z.H., Tao, J., Qiu, L., Yang, S.G., Wen, H.H.: Flux pinning and relaxation in FeSe0.5Te0.5 single crystals. Supercond. Sci. Technol. 29, 035006 (2016)

    ADS  Article  Google Scholar 

  12. 12.

    Bhoi, D., Mondal, P., Choudhury, P.: Vortex dynamics and second magnetization peak in PrFeAsO0.60F0.12 superconductor. J. Appl. Phys. 113, 183902 (2013)

    ADS  Article  Google Scholar 

  13. 13.

    Miu, D., Noji, T., Adachi, T., Koike, Y., Miu, L.: On the nature of the second magnetization peak in FeSe1-xTex single crystals. Supercond. Sci. Technol. 25, 115009 (2012)

    ADS  Article  Google Scholar 

  14. 14.

    Giamarchi, T., Le Doussal, P.: Phase diagrams of flux lattices with disorder. Phys. Rev. B. 55, 6577 (1997)

    ADS  Article  Google Scholar 

  15. 15.

    Prozorov, R., Ni, N., Tanatar, M.A., Kogan, V.G., Gordon, R.T., Martin, C., Blomberg, E.C., Prommapan, P., Yan, J.Q., Bud’ko, S.L., Canfield, P.C.: Vortex phase diagram of Ba (Fe0.93Co0.07)2As2 single crystals. Phys. Rev. B. 78, 224506 (2008)

    ADS  Article  Google Scholar 

  16. 16.

    Pervin, R., Ghosh, A., Ghosh, H., Shirage, P.M.: Study of transport properties in Se-deficient and Fe-intercalated NbSe2 single crystals: experiments and theory. J. Mater. Sci. 55, 250–262 (2020)

    ADS  Article  Google Scholar 

  17. 17.

    Pervin, R., Krishnan, M., Rana, A.K., Kannan, M., Arumugam, S., Shirage, P.M.: Enhancement of superconducting critical current density by Fe impurity substitution in NbSe2 single crystals and the vortex pinning mechanism. Phys. Chem. Chem. Phys. 19, 11230–11238 (2017)

    Article  Google Scholar 

  18. 18.

    Pervin, R., Krishnan, M., Rana, A.K., Arumugam, S., Shirage, P.M.: Effect of Cr atoms in vortex dynamics of NbSe2 superconductor and study of second magnetization peak effect. Mater. Res. Express. 5, 076001 (2018)

    ADS  Article  Google Scholar 

  19. 19.

    Iavarone, M., Di Capua, R., Karapetrov, G., Koshelev, A.E., Rosenmann, D., Claus, H., Malliakas, C.D., Kanatzidis, M.G., Nishizaki, T., Kobayashi, N.: Effect of magnetic impurities on the vortex lattice properties in NbSe2 single crystals. Phys. Rev. B. 78, 174518 (2008)

    ADS  Article  Google Scholar 

  20. 20.

    Luo, H., Nowak, J.S., Li, J., Tao, J., Klimczuk, T., Cava, R.J.: S-shaped suppression of the superconducting transition temperature in Cu-intercalated NbSe2. Chem. Mater. 29, 3704–3737 (2017)

    Article  Google Scholar 

  21. 21.

    Chen, L., Li, C., Tang, H., Li, H., Liu, X., Meng, J.: First-principles calculations on structural, electronic properties of V-doped 2H-NbSe2. RSC Adv. 4, 9573 (2014)

    Article  Google Scholar 

  22. 22.

    Yan, D., Lin, Y., Wang, G., Zhu, Z., Wang, S., Shi, L., He, Y., Li, M.R., Zheng, H., Ma, J.: The unusual suppression of superconducting transition temperature in double-doping 2H-NbSe2. Supercond. Sci. Technol. 32, 085008 (2019)

    ADS  Article  Google Scholar 

  23. 23.

    Bayard, M., Mentzen, B.F., Sienko, M.J.: Synthesis and structural aspects of the vanadium-substituted niobium diselenides. Inorg. Chem. 15, 1963–1967 (1976)

    Article  Google Scholar 

  24. 24.

    Naik, I., Tiwari, G.C., Yadav, C.S., Rastogi, A.K.: Effect of magnetic exchange interaction in resistivity on 2H-Nb1-xVxSe2. Indian J. Phys. 87, 1075–1078 (2013)

    ADS  Article  Google Scholar 

  25. 25.

    Arumugam, S., Krishnan, M., Ishigaki, K., Goughi, J., Pervin, R., Selvan, G.K., Shirage, P.M., Uwatoko, Y.: Enhancement of superconducting properties and flux pinning mechanism on Cr0.0005NbSe2 single crystal under hydrostatic pressure. Sci. Rep. 9, 347 (2019)

    ADS  Article  Google Scholar 

  26. 26.

    Shruti, M.V.K., Neha, P., Srivastava, P., Patnaik, S.: Superconductivity by Sr intercalation in the layered topological insulator Bi2Se3. Phys. Rev. B. 92(R), 020506 (2015)

    ADS  Article  Google Scholar 

  27. 27.

    Zehetmeyer, M., Weber, H.W.: Experimental evidence for a two-band superconducting state of NbSe2 single crystals. Phys. Rev. B: Condens. Mater. Mater. Phys. 82, 014524 (2010)

    ADS  Article  Google Scholar 

  28. 28.

    Tissen, V.G., Osorio, M.R., Brison, J.P., Nemes, N.M., Hernandez, M.G., Cario, L., Rodiere, P., Vieira, S., Suderow, H.: Pressure dependence of superconducting critical temperature and upper critical field of 2H-NbS2. Phys. Rev. B. 87, 134502 (2013)

    ADS  Article  Google Scholar 

  29. 29.

    Khim, S., Lee, B., Kim, J.W., Choi, E.S., Stewart, G.R., Kim, K.H.: Pauli-limiting effects in the upper critical fields of a clean LiFeAs single crystal. Phys. Rev. B. 84, 104502 (2011)

    ADS  Article  Google Scholar 

  30. 30.

    Helfand, E., Werthamer, N.R.: Temperature and purity dependence of the superconducting critical field, Hc2. ||. Phys. Rev. 147, 288–294 (1966)

    ADS  MATH  Article  Google Scholar 

  31. 31.

    Hunte, F., Jaroszynski, J., Gurevich, A., Larbalestier, D.C., Jin, R., Sefat, A.S., McGuire, M.A., Sales, B.C., Christen, D.K., Mandrus, D.: Two-band superconductivity in LaFeAsO0.89F0.l1 at very high magnetic fields. Nature. 453, 903–905 (2008)

    ADS  Article  Google Scholar 

  32. 32.

    Paltiel, Y., Fuchs, D.T., Zeldov, E., Myasoedov, Y.N., Shtrikman, H., Rappaport, M.L., Andrei, E.Y.: Surface barrier dominated transport in NbSe2. Phys. Rev. B. 58, R14763–R14766 (1998)

    ADS  Article  Google Scholar 

  33. 33.

    Zhou, W., Xing, X., Wu, W., Zhao, H., Shi, Z.: Second magnetization peak effect, vortex dynamics, and flux pinning in 112-type superconductor Ca0.8La0.2Fe(1-x)CoxAs2. Sci. Rep. 6, 22278 (2016)

    ADS  Article  Google Scholar 

  34. 34.

    Shen, B., Cheng, P., Wang, Z., Fang, L., Ren, C., Shan, L., Wen, H.H.: Flux dynamics and vortex phase diagram in Ba (Fe1-xCox)2As2 single crystals revealed by magnetization and its relaxation. Phys. Rev. B. 81, 014503 (2010)

    ADS  Article  Google Scholar 

  35. 35.

    Yang, G., Shang, P., Sutton, S.D., Jones, I.P., Abell, J.S., Gough, C.E.: Competing pinning mechanisms in Bi2Sr2CaCu2Oy single crystals by magnetic and defect structural studies. Phys. Rev. B. 48, 4054–4060 (1993)

    ADS  Article  Google Scholar 

  36. 36.

    Bean, C.P.: Magnetization of high-field superconductors. Rev. Mod. Phys. 36, 31–39 (1964)

    ADS  Article  Google Scholar 

  37. 37.

    Liu, Y., Zhou, L., Sun, K., Straszheim, W.E., Tanatar, M.A.: Doping evolution of the second magnetization peak and magnetic relaxation in (Ba1-xKx)Fe2As2 single crystals. Phys. Rev. B. 97, 054511 (2018)

    ADS  Article  Google Scholar 

  38. 38.

    Blatter, G., Feigel’man, M.V., Geshkenbein, V.B., Larkin, A.I., Vinokur, V.M.: Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994)

    ADS  Article  Google Scholar 

  39. 39.

    Higgins, M.J., Bhattacharya, S.: Varieties of dynamics in a disordered flux-line lattice. Physica C. 257, 232–254 (1996)

    ADS  Article  Google Scholar 

  40. 40.

    Haberkon, N., Miura, M., Baca, J., Maiorov, B., Usov, I., Dowden, P., Foltyn, S.R., Holesinger, T.G., Willis, J.O., Marken, K.R., Izumi, T., Shiohara, Y., Civale, L.: High-temperature change of the creep rate in YBa2Cu3O7−δ films with different pinning landscapes. Phys. Rev. B. 85, 174504 (2012)

    ADS  Article  Google Scholar 

  41. 41.

    Dew-Hughes, D.: Flux pinning mechanisms in type II superconductors. Phil. Mag. 30, 293–305 (1974)

    ADS  Article  Google Scholar 

  42. 42.

    Sun, Y., Shi, Z.X., Gu, D.M., Miura, M., Tamegai, T.: Peak effect of flux pinning in Sc5Ir4Si10 superconductor. J. Appl. Phys. 108, 073920 (2010)

    ADS  Article  Google Scholar 

  43. 43.

    Griessen, R., Hu, W.H., Van Dalen, A.J.J., Dam, B., Rector, J., Schnack, H.G., Libbrecht, S., Osquiguil, E., Bruynseraede, Y.: Evidence for mean free path fluctuation induced pinning in YBa2Cu3O7 and YBa2Cu4O8 films. Phys. Rev. Lett. 72, 1910 (1994)

    ADS  Article  Google Scholar 

  44. 44.

    Ghorbani, S.R., Wang, X.L., Shahbazi, M., Dou, S.X., Lin, C.T.: Fluctuation of mean free path and transition temperature induced vortex pinning in (Ba, K)Fe2As2 superconductors. Appl. Phys. Lett. 100, 212601 (2012)

    ADS  Article  Google Scholar 

  45. 45.

    Das, P., Thakur, A.D., Yadav, A.K., Tomy, C.V., Lees, M.R., Balakrishnan, G., Ramakrishnan, S., Grover, A.K.: Magnetization hysteresis and time decay measurements in FeSe0.50Te0.50: evidence for fluctuation in mean free path induced Pinning. Phys. Rev. B. 84, 214526 (2011)

    ADS  Article  Google Scholar 

  46. 46.

    Yang, H., Luo, H., Wang, Z., Wen, H.H.: Fishtail effect and the vortex phase diagram of single crystal Ba0.6K0.4Fe2As2. Appl. Phys. Lett. 93, 142506 (2008)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

PMS acknowledges IIT Indore and SIC for providing accessibility to equipment for research.

Funding

This work was supported by the Department of Science and Technology (SERB-DST), India, by acknowledging prestigious ‘Ramanujan Fellowship’ award (SR/S2/RJN-121/2012), India, and a CSIR support project (Grant No. 03(1349)/16/EMR-II) to PMS. The author RP received esteemed SRF Inspire fellowship (DST/INSPIRE Fellowship/2015/IF150330) from DST, India. The author MK received meritorious fellowship from UGC-RGNF-SRF, India. The author SA received financial assistance from DST (SERB, FIST, and PURSE), India.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Parasharam M. Shirage.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pervin, R., Krishnan, M., Arumugam, S. et al. Disordering Induced Second Magnetization Peak Effect and the Vortex Pinning Mechanism in V0.0007NbSe2 Single Crystal. J Supercond Nov Magn (2020). https://doi.org/10.1007/s10948-020-05542-x

Download citation

Keywords

  • Single crystals
  • Critical current density
  • Second magnetization peak
  • Small bundle pinning region
  • Large bundle collective pinning region
  • Bean-Livingstone surface barrier effect
  • Lattice softening
  • Peak effect