Spin Wave Theory and Ab Initio Calculations in Co/C Multilayers: Interfacial Effects

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Co/C multilayers were prepared using DC triode sputtering with different Co thicknesses (tCo), and their magnetic properties were investigated using a vibrating sample magnetometer. It is found that the magnetization of Co layers decreases with decreasing tCo, at thicknesses below 6 nm, which can be understood by the presence of a magnetically dead layer, due to intermixing between Co and C layers, i.e., the alloy formation around the former interface. A model based on the spin-wave theory was utilized to explain the change of the magnetization as function of temperature, and estimate the coupling exchange interaction. Ab initio calculations were utilized to explain the decrease of the magnetic moment within the interfacial layer (Co1-xCx). In addition, the influence of pressure on the magnetic properties of the Co1-xCx layer was studied as well.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Charkaoui, A., Saadi, A., Moubah, R., Lassri, M., Bouhbou, M., Bakkari, K., Lassri, H.: J. Supercond. Magn. Nov. 32, 751 (2019)

    Article  Google Scholar 

  2. 2.

    Saadi, A., Moubah, R., Lassri, H., El Amiri, A., Boughaleb, Y., Bimaghra, I., Hlil, E.K.: Physica A. 516, 340 (2019)

    ADS  Article  Google Scholar 

  3. 3.

    Su, X., Jin, T., Wang, Y., Ren, Y., Wang, L., Bai, J., Cao, J.: Jpn. J. Appl. Phys. 55, 110306 (2016)

    ADS  Article  Google Scholar 

  4. 4.

    Moubah, R., Magnus, F., Warnatz, T., Palsson, G.K., Kapaklis, V., Ukleev, V., Devishvili, A., Palisaitis, J., Persson, P.O.Å., Hjörvarsson Phys, B.: Rev. Applied. 5, 044011 (2016)

    Article  Google Scholar 

  5. 5.

    Ciudad, D., Prieto, J.L., Lucas, I., Aroca, C., Sanchez, P.: J. Appl. Phys. 101, 043907 (2007)

    ADS  Article  Google Scholar 

  6. 6.

    Shin, S.C.: Appl. Surf. Sci. 65, 110 (1993)

    ADS  Article  Google Scholar 

  7. 7.

    Zubarev, E.N., Devizenko, A.Y., Penkov, O.V., Kondratenko, V.V., Sevriukov, D.V., Sevryukova, V.A., Kopylets, I.A.: Thin Solid Films. 622, 84 (2017)

    ADS  Article  Google Scholar 

  8. 8.

    Zuberek, R., Szymczak, H., Krishnan, R., Gupta, H.O., Sella, C., Kaabouchi, M.: J. Magn. Magn. Mater. 101, 219 (1991)

    ADS  Article  Google Scholar 

  9. 9.

    Shi, J., Azumi, M., Nittono, O.: Appl. Phys.A. 73, 215 (2001)

    ADS  Article  Google Scholar 

  10. 10.

    Gao, S.: Comput. Phys. Commun. 153, 190 (2003)

    ADS  Article  Google Scholar 

  11. 11.

    Tran, F., Blaha, P.: Phys. Rev. B. 83, 235118 (2011)

    ADS  Article  Google Scholar 

  12. 12.

    P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, wien2k (2001)

  13. 13.

    Schwarz, K., Blaha, P., Trickey, S.B.: Mol. Phys. 108, 3147 (2010)

    ADS  Article  Google Scholar 

  14. 14.

    Zhao, Y.H., Su, H.Y., Sun, K., Liu, J., Li, W.X.: Surf. Sci. 606, 598 (2012)

    ADS  Article  Google Scholar 

  15. 15.

    Carroll, K.J., Huba, Z.J., Spurgeon, S.R., Qian, M., Khanna, S.N., Hudgins, D.M., Carpenter, E.E.: Appl. Phys. Lett. 101, 012409 (2012)

    ADS  Article  Google Scholar 

  16. 16.

    Chen, Z., Liu, L., Chen, Q.: Mater. Lett. 164, 554 (2016)

    Article  Google Scholar 

  17. 17.

    Wang, Z.H., Choi, C.J., Kim, B.K., Kim, J.C., Zhang, Z.D.: Carbon. 41, 1751 (2003)

    Article  Google Scholar 

  18. 18.

    Harris, V.G., Chen, Y., Yang, A., Yoon, S., Chen, Z., Geiler, A.L., Carpenter, E.E.: J. Phys. D. Appl. Phys. 43, 165003 (2010)

    ADS  Article  Google Scholar 

  19. 19.

    Zhang, Z., Wigen, P.E., Parkin, S.S.P.: J. Appl. Phys. 69, 5649 (1991)

    ADS  Article  Google Scholar 

  20. 20.

    Engel, B.N., England, C.D., Van Leeuwen, R.A., Wiedmann, M.H., Falco, C.M.: Phys. Rev. Lett. 67, 1910 (1991)

    ADS  Article  Google Scholar 

  21. 21.

    Pinettes, C., Lacroix, C.: J. Magn. Magn. Mater. 166, 59 (1997)

    ADS  Article  Google Scholar 

  22. 22.

    Lekdadri, A., Lassri, M., Abid, M., Lassri, H., Supercond, J.: Nov. Magn. 33, 1129 (2019). https://doi.org/10.1007/s10948-019-05273-8

    Article  Google Scholar 

  23. 23.

    Holstein, T., Primakoff, H.: Phys. Rev. 58, 1098 (1940)

    ADS  Article  Google Scholar 

  24. 24.

    Dyson, F.J.: Phys. Rev. 102, 1217 (1956)

    ADS  MathSciNet  Article  Google Scholar 

  25. 25.

    Lassri, M., Hamouda, H., Abid, M., Omri, M., Krishnan, R.: J. Magn. Magn. Mater. 271, 307 (2004)

    ADS  Article  Google Scholar 

  26. 26.

    Etzkorn, M., Kumar, P.A., Vollmer, R., Ibach, H., Kirschner, J.: Surf. Sci. 566, 241 (2004)

    ADS  Article  Google Scholar 

  27. 27.

    Jiles, D.: Introduction to magnetism and magnetic materials, Ames, Iowa, USA, p. 134 (1991)

    Google Scholar 

  28. 28.

    Turgut, Z., Lucas, M.S., Leontsev, S., Semiatin, S.L., Horwath, J.: J. Alloys Compd. 676, 187 (2016)

    Article  Google Scholar 

  29. 29.

    Bai, H.L., Jiang, E.Y., Wang, C.D.: Appl. Phys. A Mater. Sci. Process. 63, 57 (1996)

    ADS  Article  Google Scholar 

  30. 30.

    Sella, C., Kaabouchi, M., Miloche, M., Maaza, M., Krishnan, R.: Appl. Surf. Sci. 60, 781 (1992)

    ADS  Article  Google Scholar 

  31. 31.

    Shi, J., Azumi, M., Nittono, O.: Appl. Phys. A Mater. Sci. Process. 73, 215 (2001)

    ADS  Article  Google Scholar 

  32. 32.

    Deluque Toro, C.E., Mosquera Polo, A.S., Gil Rebaza, A.V., Landínez Téllez, D.A., Roa-Rojas, J.: J. Low Temp. Phys. 192, 265 (2018)

    ADS  Article  Google Scholar 

  33. 33.

    Sirajuddeen, M.M.S., Banu, I.S.: J. Low Temp. Phys. 173, 106 (2013)

    ADS  Article  Google Scholar 

  34. 34.

    Shein, I.R., Medvedeva, N.I., Ivanovskii, A.L.: Physica B. 371, 126 (2006)

    ADS  Article  Google Scholar 

  35. 35.

    Nishijo, J., Kosugi, K., Sawa, H., Okabe, C., Judai, K., Nishi, N.: Polyhedron. 24, 2148 (2005)

    Article  Google Scholar 

  36. 36.

    Fang, C.M., Van Huis, M.A., Zandbergen, H.W.: Phys. Rev. B. 80, 224108 (2009)

    ADS  Article  Google Scholar 

  37. 37.

    Chen, L., Wang, C.: J. Low Temp. Phys. 147, 615 (2007)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Saadi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saadi, A., Lekdadri, A., Moubah, R. et al. Spin Wave Theory and Ab Initio Calculations in Co/C Multilayers: Interfacial Effects. J Supercond Nov Magn (2020). https://doi.org/10.1007/s10948-020-05534-x

Download citation

Keywords

  • Co/C multilayers
  • Ferromagnetic
  • Interface
  • Spin wave
  • Ab-initio calculations