Magnetic Properties and Magnetic Hyperthermia of Cobalt Ferrite Nanoparticles Synthesized by Hydrothermal Method


Cobalt ferrite magnetic nanoparticles were synthesized through a hydrothermal route at various reaction temperatures: 100 °C, 130 °C, 160 °C, and 190 °C in order to study their hyperthermia potential. The heating properties of these samples were investigated by measuring time-dependent temperature curves in an external magnetic field (200 kHz, 100 Oe). Magnetic properties validated by cation distribution through octahedral and tetrahedral sites of the spinel structure done by the MAUD program. The results showed that temperature rising leads to migration of cobalt ions from octahedral to the tetrahedral site leading to change the reverse spinel structure to mixed structure. It was found that the nanoparticles synthesized at 160 °C reaction temperature had the maximum specific absorption rate (SAR) and intrinsic loss power parameter (ILP), as well as the highest saturation magnetization (Ms) and lowest coercivity (Hc) value.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Di Corato, R., Espinosa, A., Lartigue, L., Tharaud, M., Chat, S., Pellegrino, T., et al.: Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs. Biomaterials. 35, 6400–6411 (2014)

    Article  Google Scholar 

  2. 2.

    Rümenapp, C., Gleich, B., Haase, A.: Magnetic nanoparticles in magnetic resonance imaging and diagnostics. Pharm. Res. 29, 1165–1179 (2012)

    Article  Google Scholar 

  3. 3.

    Dobson, J.: Magnetic nanoparticles for drug delivery. Drug Dev. Res. 67, 55–60 (2006)

    Article  Google Scholar 

  4. 4.

    Kozissnik, B., Bohorquez, A.C., Dobson, J., Rinaldi, C.: Magnetic fluid hyperthermia: advances, challenges, and opportunity. Int. J. Hyperth. 29, 706–714 (2013)

    Article  Google Scholar 

  5. 5.

    Mondal, D., Borgohain, C., Paul, N., Borah, J.: Improved heating efficiency of bifunctional MnFe2O4/ZnS nanocomposite for magnetic hyperthermia application. Phys. B Condens. Matter. 567, 122–128 (2019)

    ADS  Article  Google Scholar 

  6. 6.

    Dutz, S., Hergt, R.: Magnetic particle hyperthermia—a promising tumour therapy? Nanotechnology. 25, 452001 (2014)

    ADS  Article  Google Scholar 

  7. 7.

    Obaidat, I., Issa, B., Haik, Y.: Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials. 5, 63–89 (2015)

    Article  Google Scholar 

  8. 8.

    Sharifi, I., Shokrollahi, H., Amiri, S.: Ferrite-based magnetic nanofluids used in hyperthermia applications. J. Magn. Magn. Mater. 324, 903–915 (2012)

    ADS  Article  Google Scholar 

  9. 9.

    Deatsch, A.E., Evans, B.A.: Heating efficiency in magnetic nanoparticle hyperthermia. J. Magn. Magn. Mater. 354, 163–172 (2014)

    ADS  Article  Google Scholar 

  10. 10.

    Ma, M., Wu, Y., Zhou, J., Sun, Y., Zhang, Y., Gu, N.: Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field. J. Magn. Magn. Mater. 268, 33–39 (2004)

    ADS  Article  Google Scholar 

  11. 11.

    Kheradmand, A., Vahidi, O., Masoudpanah, S.: Magnetic, hyperthermic and structural properties of zn substituted CaFe 2 O 4 powders. Appl. Physics A. 124, 255 (2018)

    ADS  Article  Google Scholar 

  12. 12.

    Donglin, Z., Xianwei, Z., Qisheng, X., Jintian, T.: Inductive heat property of Fe3O4 nanoparticles in AC magnetic field for local hyperthermia. Rare Metals. 25, 621–625 (2006)

    Article  Google Scholar 

  13. 13.

    Cabuil, V., Dupuis, V., Talbot, D., Neveu, S.: Ionic magnetic fluid based on cobalt ferrite nanoparticles: influence of hydrothermal treatment on the nanoparticle size. J. Magn. Magn. Mater. 323, 1238–1241 (2011)

    ADS  Article  Google Scholar 

  14. 14.

    Zhang, Y., Liu, Y., Fei, C., Yang, Z., Lu, Z., Xiong, R., et al.: The temperature dependence of magnetic properties for cobalt ferrite nanoparticles by the hydrothermal method. J. Appl. Phys. 108, 084312 (2010)

    ADS  Article  Google Scholar 

  15. 15.

    De Biasi, E., Zysler, R., Ramos, C., Knobel, M.: A new model to describe the crossover from superparamagnetic to blocked magnetic nanoparticles. J. Magn. Magn. Mater. 320, e312–e315 (2008)

    Article  Google Scholar 

  16. 16.

    Bader, S.D.: Colloquium: opportunities in nanomagnetism. Rev. Mod. Phys. 78, 1 (2006)

    ADS  Article  Google Scholar 

  17. 17.

    Nasrin, S., Chowdhury, F.-U.-Z., Hoque, S.: Study of hydrodynamic size distribution and hyperthermia temperature of chitosan encapsulated zinc-substituted manganese nano ferrites suspension. Phys. B Condens. Matter. 561, 54–63 (2019)

    ADS  Article  Google Scholar 

  18. 18.

    Ojha, V.H., Kant, K.M.: Temperature dependent magnetic properties of superparamagnetic CoFe2O4 nanoparticles. Phys. B Condens. Matter. 567, 87–94 (2019)

    ADS  Article  Google Scholar 

  19. 19.

    Sánchez, J., Cortés-Hernández, D.A., Rodríguez-Reyes, M.: Synthesis of TEG-coated cobalt-gallium ferrites: characterization and evaluation of their magnetic properties for biomedical devices. J. Alloys Compd. 781, 1040–1047 (2019)

    Article  Google Scholar 

  20. 20.

    Cote, L.J., Teja, A.S., Wilkinson, A.P., Zhang, Z.J.: Continuous hydrothermal synthesis of CoFe2O4 nanoparticles. Fluid Phase Equilib. 210, 307–317 (2003)

    Article  Google Scholar 

  21. 21.

    Daou, T., Pourroy, G., Bégin-Colin, S., Grenèche, J.-M., Ulhaq-Bouillet, C., Legaré, P., et al.: Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem. Mater. 18, 4399–4404 (2006)

    Article  Google Scholar 

  22. 22.

    Zhao, L., Zhang, H., Xing, Y., Song, S., Yu, S., Shi, W., et al.: Studies on the magnetism of cobalt ferrite nanocrystals synthesized by hydrothermal method. J. Solid State Chem. 181, 245–252 (2008)

    ADS  Article  Google Scholar 

  23. 23.

    Zhao, D., Wu, X., Guan, H., Han, E.: Study on supercritical hydrothermal synthesis of CoFe2O4 nanoparticles. J. Supercrit. Fluids. 42, 226–233 (2007)

    Article  Google Scholar 

  24. 24.

    Liu, J., Römer, I., Tang, S.V.Y., Valsami-Jones, E., Palmer, R.E.: Crystallinity depends on choice of iron salt precursor in the continuous hydrothermal synthesis of Fe–Co oxide nanoparticles. RSC Adv. 7, 37436–37440 (2017)

    Article  Google Scholar 

  25. 25.

    Prabhakaran, T., Mangalaraja, R., Denardin, J.C., Jiménez, J.A.: The effect of reaction temperature on the structural and magnetic properties of nano CoFe2O4. Ceram. Int. 43, 5599–5606 (2017)

    Article  Google Scholar 

  26. 26.

    Singh, S., Khare, N.: Defects/strain influenced magnetic properties and inverse of surface spin canting effect in single domain CoFe2O4 nanoparticles. Appl. Surf. Sci. 364, 783–788 (2016)

    ADS  Article  Google Scholar 

  27. 27.

    Singh, S., Munjal, S., Khare, N.: Strain/defect induced enhanced coercivity in single domain CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 386, 69–73 (2015)

    ADS  Article  Google Scholar 

  28. 28.

    Chinnasamy, C., Jeyadevan, B., Shinoda, K., Tohji, K., Djayaprawira, D., Takahashi, M., et al.: Unusually high coercivity and critical single-domain size of nearly monodispersed CoFe 2 O 4 nanoparticles. Appl. Phys. Lett. 83, 2862–2864 (2003)

    ADS  Article  Google Scholar 

  29. 29.

    Liu, B.H., Ding, J., Dong, Z., Boothroyd, C., Yin, J., Yi, J.: Microstructural evolution and its influence on the magnetic properties of CoFe 2 O 4 powders during mechanical milling. Phys. Rev. B. 74, 184427 (2006)

    ADS  Article  Google Scholar 

  30. 30.

    Kallumadil, M., Tada, M., Nakagawa, T., Abe, M., Southern, P., Pankhurst, Q.A.: Suitability of commercial colloids for magnetic hyperthermia. J. Magn. Magn. Mater. 321, 1509–1513 (2009)

    ADS  Article  Google Scholar 

  31. 31.

    Cruz, M., Ferreira, L., Ramos, J., Mendo, S., Alves, A., Godinho, M., et al.: Enhanced magnetic hyperthermia of CoFe2O4 and MnFe2O4 nanoparticles. J. Alloys Compd. 703, 370–380 (2017)

    Article  Google Scholar 

  32. 32.

    Nemati, Z., Alonso, J., Martinez, L., Khurshid, H., Garaio, E., Garcia, J., et al.: Enhanced magnetic hyperthermia in iron oxide nano-octopods: size and anisotropy effects. J. Phys. Chem. C. 120, 8370–8379 (2016)

    Article  Google Scholar 

  33. 33.

    Phong, P., Phuc, N., Nam, P., Chien, N., Dung, D., Linh, P.: Size-controlled heating ability of CoFe2O4 nanoparticles foráhyperthermia applications. Phys. B Condens. Matter. 531, 30–34 (2018)

    ADS  Article  Google Scholar 

Download references


This study received financial supports from Iran National Science Foundation (INSF, Grant No. 96004417) and Russian Foundation for Basic Research (RFBR, Grant No. 17-53-560025).

Author information



Corresponding author

Correspondence to M. Khodaei.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fayazzadeh, S., Khodaei, M., Arani, M. et al. Magnetic Properties and Magnetic Hyperthermia of Cobalt Ferrite Nanoparticles Synthesized by Hydrothermal Method. J Supercond Nov Magn 33, 2227–2233 (2020).

Download citation


  • Magnetic nanoparticle
  • Hyperthermia
  • Cobalt ferrite
  • Hydrothermal
  • Specific absorption rate
  • Intrinsic loss power parameter