Intersection Magnetization and Temperature Revealed by FCC-FCT Phase Transformation in the FePd Binary Alloy System

Abstract

This study investigated the fcc-fct phase transformation effect on the magnetic properties of the FePd alloy system by means of the effective field theory (EFT) developed by Kaneyoshi (1993). We determined the thermal magnetization loop and magnetic hysteresis loop of fcc-FePd and fct-FePd for both the ferromagnetic (FM) and antiferromagnetic (AFM) case. We found that the FM fcc-FePd and fct-FePd have a single thermal magnetization area, whereas AFM fcc-FePd and fct-FePd have binary thermal magnetization area. In the AFM case, the magnetization curves for fcc-FePd and fct-FePd had an intersection temperature point (Ti = 1.33 at H = 0). At Ti, the magnetization value of the fcc-FePd and fct-FePd was almost the same (Mi = 0.59) and we call this magnetization the intersection magnetization. However, the magnetic hysteresis loop area of the fcc-FePd was higher than that of the fct-FePd for both the FM and AFM case. Fcc-fct phase transformation has a strong effect on the FM and AFM properties of the FePd binary alloy system.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Liu, E., Wang, W., Feng, L., Zhu, W., Li, G., Chen, J., Zhang, H., Wu, G., Jiang, C., Xu, H., De Boer, F.: Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets. Nat Commun. 3, 873 (2012)

    ADS  Google Scholar 

  2. 2.

    Ullakko, K., Huang, J.K., Kantner, C., O’Handley, R.C., Kokorin, V.V.: Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl Phys Lett. 69, 1966–1968 (1996)

  3. 3.

    Wu, G.H., Yu, C.H., Meng, L.Q., Chen, J.L., Yang, F.M., Qi, S.R., Zhan, W.S., Wang, Z., Zheng, Y.F., Zhao, L.C.: Giant magnetic-field-induced strains in Heusler alloy NiMnGa with modified composition. Appl Phys Lett. 75, 2990–2992 (1999)

    ADS  Google Scholar 

  4. 4.

    Kakeshita, T., Takeuchi, T., Fukuda, T., Saburi, T., Oshima, R., Muto, S., Kishio, K.: Magnetic field-induced martensitic transformation and giant magnetostriction in Fe-Ni-Co-Ti and ordered Fe3Pt shape memory alloys. Mater T Jim. 41, 882–887 (2000)

  5. 5.

    Kainuma, R., Imano, Y., Ito, W., Sutou, Y., Morito, H., Okamoto, S., Kitakami, O., Oikawa, K., Fujita, A., Kanomata, T., Ishida, K.: Magnetic-field-induced shape recovery by reverse phase transformation. Nature. 439, 957–960 (2006)

    ADS  Google Scholar 

  6. 6.

    Yu, S.Y., Liu, Z.H., Liu, G.D., Chen, J.L., Cao, Z.X., Wu, G.H.: Large magnetoresistance in single-crystalline Ni50Mn50−xInx alloys (x=14–16) upon martensitic transformation. Appl Phys Lett. 89, 162503 (2006)

  7. 7.

    Barandiaran, J.M., Chernenko, V.A., Lazpita, P., Gutierrez, J., Feuchtwanger, J.: Effect of martensitic transformation and magnetic field on transport properties of Ni-Mn-Ga and Ni-Fe-Ga Heusler alloys. Phys Rev B. 80, 104404 (2009)

    ADS  Google Scholar 

  8. 8.

    Krenke, T., Duman, E., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A.: Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nat Mater. 4, 450–454 (2005)

    ADS  Google Scholar 

  9. 9.

    Gutfleisch, O., Willard, M.A., Brück, E., Chen, C.H., Sankar, S.G., Liu, J.P.: Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv Mater. 23, 821–842 (2011)

    Google Scholar 

  10. 10.

    Karaca, H.E., Karaman, I., Basaran, B., Ren, Y., Chumlyakov, Y.I., Maier, H.J.: Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys-a new actuation mechanism with large work output. Adv Funct Mater. 19, 983–998 (2009)

    Google Scholar 

  11. 11.

    Chmielus, M., Zhang, X.X., Witherspoon, C., Dunand, D.C., Mullner, P.: Giant magnetic-field-induced strains in polycrystalline Ni-Mn-Ga foams. Nat Mater. 8, 863–866 (2009)

    ADS  Google Scholar 

  12. 12.

    Sarawate, N., Dapino, M.: Experimental characterization of the sensor effect in ferromagnetic shape memory Ni-Mn-Ga. Appl Phys Lett. 88, 121923 (2006)

    ADS  Google Scholar 

  13. 13.

    Novac, A., Sprincenatu, R., Chilnicean, G., Bolocan, V., Craciunescu, C., Martensitic transformation in Fe-Pd ferromagnetic shape memory alloy wires. In IOP Conference Series: Materials Science and Engineering 416, 012018 (2018)

  14. 14.

    Kumar, M.S.: Temperature dependence of magnetization in Fe–Pd thin films. Mater Sci Eng B. 162, 59–63 (2009)

    Google Scholar 

  15. 15.

    Sakamoto, T., Fukuda, T., Kakeshita, T., Takeuchi, T., Kishio, K.: Magnetic field-induced strain in iron-based ferromagnetic shape memory alloys. J Appl Phys. 93, 8647 (2003)

    ADS  Google Scholar 

  16. 16.

    James, R.D., Wuttig, M.: Magnetostriction of martensite. Philos Mag A. 77, 1273 (1998)

    ADS  Google Scholar 

  17. 17.

    Furuya, Y., Hagood, N.W., Kimura, H., Watanabe, T.: Shape memory effect and magnetostriction in rapidly solidified Fe-29.6 at% Pd alloy. Mater Trans JIM. 39, 1248 (1998)

    Google Scholar 

  18. 18.

    Annamalaı, S., Chelvane, A.J., Mohanty, J.: Enhancement of magnetic and surface properties in magneto-pulse electrodeposited Fe-Pd alloy thin films at various deposition potentials. Mater Res Exp. 6, 066110 (2019)

    Google Scholar 

  19. 19.

    Matsui, M., Adachi, K.: Magnetostriction of Fe-Pd invar. J Magn Magn Mater. 31, 115–116 (1983)

    ADS  Google Scholar 

  20. 20.

    James, R.D., Wuttig, M.: Magnetostriction of martensite. Philos Mag A. 77, 1273–1299 (1998)

    ADS  Google Scholar 

  21. 21.

    Buschbeck, J., Opahle, I., Fähler, S., Schultz, L., Richter, M.: Magnetic properties of Fe-Pd magnetic shape memory alloys: density functional calculations and epitaxial films. Phys Rev B. 77, 174421 (2008)

    ADS  Google Scholar 

  22. 22.

    Vokoun, D., Goryczka, T., Hu, C.T.: Thermomechanical and magnetic properties of the as-spun Fe–Pd SMA ribbons. J Alloys Compd. 372, 165–168 (2004)

    Google Scholar 

  23. 23.

    Liang, Y.C., Sutou, Y., Wada, T., Lee, C.C., Taya, M., Mori, T.: Magnetic field-induced reversible actuation using ferromagnetic shape memory alloys. Scr Mater. 48, 1415–1419 (2003)

    Google Scholar 

  24. 24.

    Inoue, S., Inoue, K., Koterazawa, K., Mizuuchi, K.: Shape memory behavior of Fe–Pd alloy thin films prepared by dc magnetron sputtering. Mater Sci Eng A. 339, 29–34 (2003)

    Google Scholar 

  25. 25.

    Sugiyama, M., Oshima, R., Fujita, F.E.: Mechanism of FCC-FCT thermoelastic martensite transformation in Fe–Pd alloys. Trans J Inst Met. 27, 719–730 (1986)

    Google Scholar 

  26. 26.

    Yamamoto, T., Taya, M., Sutou, Y., Liang, Y., Wada, T., Sorensen, L.: Magnetic field- induced reversible variant rearrangement in Fe–Pd single crystals. Acta Mater. 52, 5083–5091 (2004)

    Google Scholar 

  27. 27.

    Furuya, Y., Hagood, N.W., Kimura, H., Watanabe, T.: Shape memory effect and magnetostriction in rapidly solidified Fe-29.6 at% Pd alloy. Mater Trans JIM. 39, 1248–1254 (1998)

    Google Scholar 

  28. 28.

    Edler, T., Mayr, S.G.: Film lift–off from MgO: freestanding single crystalline Fe–Pd films suitable for magnetic shape memory actuation–and beyond. Adv Mater. 22, 4969–4972 (2010)

    Google Scholar 

  29. 29.

    Kubota, T., Okazaki, T., Furuya, Y., Watanabe, T.: Large magnetostriction in rapid-solidified ferromagnetic shape memory Fe–Pd alloy. J Magn Magn Mater. 239, 551–553 (2002)

    ADS  Google Scholar 

  30. 30.

    Tsuchiya, K., Nojiri, T., Ohtsuka, H., Umemoto, M.: Effect of Co and Ni on martensitic transformation and magnetic properties in Fe-Pd ferromagnetic shape memory alloys. Mater Trans. 44, 2499–2502 (2003)

    Google Scholar 

  31. 31.

    Yildiz, G., Yildiz, Y.G., Nezir, S.: New observations on formation of thermally induced martensite in Fe–30% Ni–1% Pd alloy. Bull Mater Sci. 36, 93–97 (2013)

    Google Scholar 

  32. 32.

    Şarlı, N., Yıldız, G.D., Yıldız, Y.G., Yağcı, N.K.: Magnetic properties of the martensitic transformations with twinned and detwinned. Physica B. 553, 161–168 (2019)

    ADS  Google Scholar 

  33. 33.

    Yildiz, Y.G., Yildiz, G.D.: Effect of thermocycling on the structure of martensite and kinetics of martensitic transformation in alloy Fe–30% Ni–3% Pd. Met Sci Heat Treat. 59, 407–409 (2017)

    ADS  Google Scholar 

  34. 34.

    Kaneyoshi, T.: Differential operator technique in the Ising spin systems. Acta Phys Pol A. 83, 703–737 (1993)

    Google Scholar 

  35. 35.

    Şarlı, N.: Superconductor core effect of the body centered orthorhombic nanolattice structure. J Supercond Nov Magn. 28, 2355–2363 (2015)

    Google Scholar 

  36. 36.

    Keskin, M., Şarlı, N.: Superconducting phase diagram of the yttrium, barium, and YBa-core in YBa2Cu3O7–δ by an Ising model. J Exp Theor Phys. 127, 516–524 (2018)

  37. 37.

    Keskin, M., Şarlı, N.: Magnetic properties of the binary nickel/bismuth alloy. J Magn Magn Mater. 437, 1–6 (2017)

    ADS  Google Scholar 

  38. 38.

    Duran, A.: Lattice location effect of Ni50Mn36Sn14 Heusler alloy. J Supercond Nov Magn. 31, 1101–1109 (2018)

  39. 39.

    Duran, A.: Surface superconductivity in Ni50Mn36Sn14 Heusler alloy. J Supercond Nov Magn. 61, 4053–4062 (2018)

  40. 40.

    Şarlı, N., Ak, F., Özdemir, E.G., Saatçi, B., Merdan, Z.: Key role of central antimony in magnetization of Ni0.5Co1.5MnSb quaternary Heusler alloy revealed by comparison between theory and experiment. Physica B. 560, 46–50 (2019)

  41. 41.

    Şarlı, N.: The effects of next nearest-neighbor exchange interaction on the magnetic properties in the one-dimensional Ising system. Phys E. 63, 324–328 (2015)

    Google Scholar 

  42. 42.

    Şarlı, N.: Paramagnetic atom number and paramagnetic critical pressure of the sc, bcc and fcc Ising nanolattices. J Magn Magn Mater. 374, 238–244 (2015)

    ADS  Google Scholar 

  43. 43.

    Kaneyoshi, T.: Effects of indirect exchange interactions in a mixed-spin bilayer film with nonmagnetic layers. J Supercond Nov Magn. 31, 2149–2155 (2018)

    Google Scholar 

  44. 44.

    Kaneyoshi, T.: Effects of a transverse field in two mixed-spin Ising bilayer films. Nanomaterials. 7, 256 (2017)

    Google Scholar 

  45. 45.

    Kaneyoshi, T.: Frustration in a graphene-like transverse Ising nanoisland. Physica B. 561, 141–146 (2019)

    ADS  Google Scholar 

  46. 46.

    Kaneyoshi, T.: Phase transition in a Spin-1/2 and Spin-1 Ising bilayer film with non-magnetic inter-layers. J Supercond Nov Magn. 31, 3331–3337 (2018)

    Google Scholar 

  47. 47.

    Jiang, W., Yang, Y.Y., Guo, A.B.: Study on magnetic properties of a nano-graphene bilayer. Carbon. 95, 190–198 (2015)

    Google Scholar 

  48. 48.

    Wanga, K., Yin, P., Zhang, Y., Jiang, W.: Phase diagram and magnetization of a graphene nanoisland structure. Physica A. 505, 268–279 (2018)

    ADS  MathSciNet  Google Scholar 

  49. 49.

    Jiang, W., Wang, Y.N., Guo, A.B., Yang, Y.Y., Shi, K.L.: Magnetization plateaus and the susceptibilities of a nano-graphenes and wich-like structure. Carbon. 110, 41–47 (2016)

    Google Scholar 

  50. 50.

    Si, N., Zhang, F., Jiang, W., Zhang, Y.L.: Magnetic and thermodynamics properties graphene monolayer with defects. Physica A. 510, 641–648 (2018)

    ADS  Google Scholar 

  51. 51.

    Santos, J.P., Barreto, F.C.S.: An effective-field theory study of trilayer Ising nanostructure: thermodynamic and magnetic properties. J Magn Magn Mater. 439, 114–119 (2017)

    ADS  Google Scholar 

  52. 52.

    Şarlı, N.: Generation of an external magnetic field with the spin orientation effect in a single layer Ising nanographene. Phys E. 83, 22–29 (2016)

    Google Scholar 

  53. 53.

    Şarlı, N., Akbudak, S., Ellialtıoğlu, M.R.: The peak effect (PE) region of the antiferromagnetic two layer Ising nanographene. Physica B. 452, 18–22 (2014)

    ADS  Google Scholar 

  54. 54.

    Şarlı, N., Akbudak, S., Polat, Y., Ellialtıoğlu, M.R.: Effective distance of a ferromagnetic trilayer Ising nanostructure with an ABA stacking sequence. Physica A. 434, 194–200 (2015)

    ADS  Google Scholar 

  55. 55.

    Yıldız, Y.G.: Origin of the hardness in the monolayer nanographene. Phys Lett A. 383, 2333–2338 (2019)

    ADS  Google Scholar 

  56. 56.

    Gonzalez, E.A., Jasen, P.V., Castellani, N.J., Juan, A.: The effect of interstitial hydrogen on the electronic structure of Fe–Pd alloys. J Phys Chem Solids. 65, 1799–1807 (2004)

    ADS  Google Scholar 

  57. 57.

    Jasen, P.V., Gonzalez, E.A., Castellanı, N.J, Juan, A., A theoretical study of H absorption at a Fe(110)-Pd(100) interface and Fe–Pd alloys, J Mater Sci 40, 2775–2782 (2005)

  58. 58.

    Kittel, C.: Introduction to Solid State Physics, 7th edn, pp. 333–378. John Wiley & Sons Inc, New York (1996)

    Google Scholar 

  59. 59.

    Tiberto, P., Celegato, F., Barrera, G., Coisson, M., Vinai, F., Rizzi, P.: Magnetization reversal and microstructure in polycrystalline Fe50Pd50 dot arrays by selfassembling of polystyrene nanospheres. Sci Technol Adv Mater. 17, 462–472 (2016)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gökçen Dikici Yıldız.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yıldız, G.D. Intersection Magnetization and Temperature Revealed by FCC-FCT Phase Transformation in the FePd Binary Alloy System. J Supercond Nov Magn 33, 2051–2058 (2020). https://doi.org/10.1007/s10948-020-05447-9

Download citation

Keywords

  • Fcc-fct phase transformation
  • Alloys of the FePd system
  • Intersection temperature
  • Effective field theory