Magnetocaloric Properties of Nanostructured La0.7-xBixSr0.3MnO3 (x = 0.0, 0.1) Manganites Using Phenomenological Model

Abstract

Magnetocaloric properties of nanostructured pristine and Bi-doped La0.7Sr0.3MnO3 samples, synthesised by high-energy planetary ball milling, are presented here. The aim of the study is to understand the effect of milling time on magnetic entropy change, relative cooling power and change in specific heat. The magnetocaloric property, defined as the change in the magnetic entropy, has been determined by using a phenomenological model applied to the magnetic susceptibility plots. Replacing 10% La by Bi in La0.7Sr0.3MnO3 significantly alters the change in magnetic entropy. Correlation between the particle size and magnetic entropy is observed in the present study. As the milling time increases from 0 h (bulk) to 48 h, the particle size reduces causing significant modifications in the magnetocaloric properties.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Pecharsky, V.K., Gschneidner Jr., K.A.: Magnetocaloric effect and magnetic refrigeration. J. Magn. Magn. Mater. 200, 44 (1999)

    ADS  Article  Google Scholar 

  2. 2.

    Gschneidner Jr., K.A., Pecharsky, V.K., Pecharsky, A.O., Zim, C.B.: Recent developments in magnetic refrigeration. Mater. Sci. Forum. 315, 69 (1999)

    Article  Google Scholar 

  3. 3.

    Gschneidner Jr., K.A., Pecharsky, V.K.: Magnetic refrigeration materials. J. Appl. Phys. 85, 5365 (1999)

    ADS  Article  Google Scholar 

  4. 4.

    Pecharsky, V.K., Gschneidner, K.A.: Giant magnetocaloric effect in Gd5(Si2Ge2). Phys. Rev. Lett. 78, 4494 (1997)

    ADS  Article  Google Scholar 

  5. 5.

    Tegus, O., Brück, E., Buschow, K.H.J., De Boer, F.R.: Transition-metal-based magnetic refrigerants for room-temperature applications. Nature. 415, 150 (2002)

    ADS  Article  Google Scholar 

  6. 6.

    Phan, M.H., Yu, S.-C.: Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325 (2007)

    ADS  Article  Google Scholar 

  7. 7.

    Tishin, A.M., Spichkin, Y.I.: The Magnetocaloric Effect and its Applications. CRC Press (2016)

  8. 8.

    Amaral, J.S., Amaral, V.S.: On estimating the magnetocaloric effect from magnetization measurements. J. Magn. Magn. Mater. 322, 1522 (2010)

    ADS  Google Scholar 

  9. 9.

    Bean, C.P., Rodbell, D.S.: Magnetic disorder as a first-order phase transformation. Phys. Rev. 126, 104 (1962)

    ADS  Article  Google Scholar 

  10. 10.

    Hamad, M.A.: Theoretical work on magnetocaloric effect in La0.75Ca0.25MnO3. J. Adv. Ceram. 1, 290 (2012)

    Article  Google Scholar 

  11. 11.

    Bebenin, N.G., Zainullina, R.I., Ustinov, V.V., Ya, M., Mukovskii: Effect of inhomogeneity on magnetic, magnetocaloric, and magnetotransport properties of La0.6Pr0.1Ca0.3MnO3 single crystal. J. Magn. Magn. Mater. 324, 1112 (2012)

    ADS  Article  Google Scholar 

  12. 12.

    Maignan, A., Hébert, S., Pi, L., Pelloquin, D., Martin, C., Michel, C., Hervieu, M., Raveau, B.: Perovskite manganites and layered cobaltites: potential materials for thermoelectric applications. Cryst. Eng. 5, 365 (2002)

    Article  Google Scholar 

  13. 13.

    Goto, T., Kimura, T., Lawes, G., Ramirez, A.P., Tokura, Y.: Ferroelectricity and giant magnetocapacitance in perovskite rare-earth manganites. Phys. Rev. Lett. 92, 257201 (2004)

    ADS  Article  Google Scholar 

  14. 14.

    Jiang, S.: Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. J. Mater. Sci. 43, 6799 (2008)

    ADS  Article  Google Scholar 

  15. 15.

    Rao, C.N.R., Raveau, B.: Colossal magnetoresistance, charge ordering and related properties of manganese oxides. World Scientific (1998)

  16. 16.

    Bingham, N.S., Phan, M.H., Srikanth, H., Torija, M.A., Leighton, C.: Magnetocaloric effect and refrigerant capacity in charge-ordered manganites. J. Appl. Phys.106, 023909 (2009)

  17. 17.

    Tang, T., Gu, K.M., Cao, Q.Q., Wang, D.H., Zhang, S.Y., Du, Y.W.: Magnetocaloric properties of Ag-substituted perovskite-type manganites. J. Magn. Magn. Mater. 222, 110 (2000)

    ADS  Article  Google Scholar 

  18. 18.

    Das, S., Dey, T.K.: Magnetocaloric effect in potassium doped lanthanum manganite perovskites prepared by a pyrophoric method. J. Phys. Condens: Mater. 18, 7629 (2006)

    ADS  Article  Google Scholar 

  19. 19.

    Terashita, H., Garbe, J.J., Neumeier, J.J.: Compositional dependence of the magnetocaloric effect in La1−xCaxMnO3 (0⩽ x⩽ 0.52). Phys. Rev. B. 70, 094403 (2004)

    ADS  Article  Google Scholar 

  20. 20.

    Szewczyk, A., Gutowska, A.M., Dabrowski, B., Plackowski, T., Danilova, N.P., Gaidukov, Y.P.: Specific heat anomalies in La1−xSrxMnO3 (0.12⩽ x⩽ 0.2). Phys. Rev. B. 71, 224432 (2005)

    ADS  Article  Google Scholar 

  21. 21.

    Phan, M.H., Tian, S.-B., Yu, S.-C., Ulyanov, A.N.: Magnetic and magnetocaloric properties of La0.7Ca0.3−xBaxMnO3 compounds. J. Magn. Magn. Mater. 256, 306 (2003)

    ADS  Article  Google Scholar 

  22. 22.

    Selmi, A., M’nassri, R., Cheikhrouhou-Koubaa, W., Chniba Boudjada, N., Cheikhrouhou, A.: Effects of partial Mn-substitution on magnetic and magnetocaloric properties in Pr0.7Ca0.3Mn0.95X0.05O3 (Cr, Ni, Co and Fe) manganites. J. Alloys Compd. 619, 627 (2015)

    Article  Google Scholar 

  23. 23.

    Arayedh, B., Kallel, S., Kallel, N., Peña, O.: Influence of non-magnetic and magnetic ions on the MagnetoCaloric properties of La0.7Sr0.3Mn0.9M0.1O3 doped in the Mn sites by M= Cr, Sn, Ti. J. Magn. Magn. Mater. 361, 68 (2014)

    ADS  Article  Google Scholar 

  24. 24.

    Sande, P., Hueso, L.E., Miguens, D.R., Rivas, J., Rivadulla, F., Lopez-Quintela, M.A.: Large magnetocaloric effect in manganites with charge order. Appl. Phys. Lett. 79, 2040 (2001)

    ADS  Article  Google Scholar 

  25. 25.

    Urushibara, A., Moritomo, Y., Arima, T., Asamitsu, A., Gt Kido, Y., Tokura: Insulator-metal transition and giant magnetoresistance in La1-xSrxMnO3. Phys. Rev. B. 51, 14103 (1995)

    ADS  Article  Google Scholar 

  26. 26.

    Anane, A., Dupas, C., Dang, K.L., Renard, J.P., Veillet, P., Guevara, A.M.d.L., Millot, F., Pinsard, L., Revcolevschi, A.: Transport properties and magnetic behaviour of La1-xSrxMnO3 single crystals. J. Phys. Condens: Mater. 7, 7015 (1995)

    ADS  Article  Google Scholar 

  27. 27.

    Terashita, H., Myer, B., Neumeier, J.J.: Influence of a first-order structural transition on magnetocaloric effects in manganese oxides. Phys. Rev. B. 72, 132415 (2005)

    ADS  Article  Google Scholar 

  28. 28.

    Demin, R.V., Koroleva, L.I.: Influence of a magnetic two-phase state on the magnetocaloric effect in the La1−xSrxMnO3 manganites. Phys. Solid State. 46, 1081 (2004)

    ADS  Article  Google Scholar 

  29. 29.

    Szewczyk, A., Szymczak, H., Wiśniewski, A., Piotrowski, K., Kartaszyński, R., Dabrowski, B., Koleśnik, S., Bukowski, Z.: Magnetocaloric effect in La1−xSrxMnO3 for x = 0.13 and 0.16. Appl. Phys. Lett. 77, 1026 (2000)

    ADS  Article  Google Scholar 

  30. 30.

    Zarifi, M., Kameli, M.P., Ehsani, M.H., Ahmadvand, H., Salamati, H.: Effects of rare earth ions substitution on the magnetocaloric and critical behavior of La0.6A0.2Sr0.2MnO3 (A= Pr, Nd, Ce) manganite. J. Alloys Compd. 718, 443 (2017)

    Article  Google Scholar 

  31. 31.

    Belik, A.A., Takayama-Muromachi, E.: Magnetic properties of BiMnO3 studied with dc and ac magnetization and specific heat. Inorg. Chem. 45, 10224 (2006)

    Article  Google Scholar 

  32. 32.

    Atou, T., Chiba, H., Ohoyama, K., Yamaguchi, Y., Syono, Y.: Structure determination of ferromagnetic perovskite BiMnO3. J. Solid State Chem. 145, 639 (1999)

    ADS  Article  Google Scholar 

  33. 33.

    Frontera, C., García-Muñoz, J.L., Llobet, A., Aranda, M.A.G., Ritter, C., Respaud, M., Vanacken, J.: Room temperature charge and orbital ordering and phase coexistence in Bi0.5Sr0.5MnO3. J. Phys. Condens. Matter. 13, 1071 (2001)

    ADS  Article  Google Scholar 

  34. 34.

    Barik, S.K., Mahendiran, R.: Effect of Bi doping on magnetic and magnetocaloric properties of La0.7−xBixSr0.3MnO3 (0≤ x≤ 0.4). J. Appl. Phys. 107, 093906 (2010)

    ADS  Article  Google Scholar 

  35. 35.

    Xia, Z.C., Xiao, L.X., Peng, L.P., Huang, J.W., Chen, P.R., Ouyang, Z.W., Wu, Y.Y., Li, H.N.: Unusual magnetization suppression induced by higher magnetic field in (La0. 83Bi0.17)0.67Ca0.33MnO3. J. Magn. Magn. Mater. 324, 3040 (2012)

    ADS  Article  Google Scholar 

  36. 36.

    Kambhala, N., Chen, M., Li, P., Zhang, X.-x., Rajesh, D., Bhagyashree, K.S., Goveas, L.R., Bhat, S.V., Kumar, P.A., Mathieu, R., Angappane, S.: Study of coexisting phases in Bi doped La0.67Sr0.33MnO3. J. Magn. Magn. Mater. 406, 22 (2016)

    ADS  Article  Google Scholar 

  37. 37.

    Souza, A.D., Babu, P.D., Rayaprol, S., Murari, M.S., Mendonca, L.D., Daivajna, M.: Size control on the magnetism of La0.7Sr0.3MnO3. J. Alloys Compd. 797, 874 (2019)

    Article  Google Scholar 

  38. 38.

    Souza, A.D., Babu, P.D., Rayaprol, S., Daivajna, M.: Study of combined effect of partial Bi doping and particle size reduction on magnetism of La0.7Sr0.3MnO3. J. Magn. Magn. Mater. 497, 166020 (2020)

    Article  Google Scholar 

  39. 39.

    Zener, C.: Interaction between the d-shells in the transition metals II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. B. 82, 403 (1951)

    ADS  Article  Google Scholar 

  40. 40.

    Guo, Z.B., Du, Y.W., Zhu, J.S., Huang, H., Ding, W.P., Feng, D.: Large magnetic entropy change in perovskite-type manganese oxides. Phys. Rev. Lett. 78, 1142 (1997)

    ADS  Article  Google Scholar 

  41. 41.

    Cheng, Z.X., Silver, T.M., Li, A.H., Wang, X.L., Kimura, H.: Effect of progressive substitution of La3+ by Bi3+ on the structure, magnetic and transport properties of La0.67Sr0.33MnO3. J. Magn. Magn. Mater. 283, 143 (2004)

    ADS  Article  Google Scholar 

  42. 42.

    Daivajna, M.D., Rao, A.: Magnetocaloric effect in pristine and Bi-doped Pr0.6Sr0. 4MnO3 manganite. Solid State Commun. 245, 65 (2016)

    ADS  Article  Google Scholar 

  43. 43.

    Nedelko, N., Lewinska, S., Pashchenko, A., Radelytskyi, I., Diduszko, R., Zubov, E., Lisowski, W., Sobczak, J.W., Dyakonov, K., Waniewska, A.S., Dyakonov, V., Szymczak, H.: Magnetic properties and magnetocaloric effect in La0.7Sr0.3−xBixMnO3 manganites. J. Alloys Compd. 640, 433 (2015)

    Article  Google Scholar 

  44. 44.

    Chakraborty, A., Maiti, H.S.: Bi2O3 as an effective sintering aid for La (Sr) MnO3 powder prepared by autoignition route. Ceram. Int. 25, 115 (1999)

    Article  Google Scholar 

  45. 45.

    Lopez-Quintela, M.A., Hueso, L.E., Rivas, J., Rivadulla, F.: Intergranular magnetoresistance in nanomanganites. Nanotechnology. 14, 212 (2003)

    ADS  Article  Google Scholar 

  46. 46.

    Zhang, X.X., Wen, G.H., Wang, F.W., Wang, W.H., Yu, C.H., Wu, G.H.: Magnetic entropy change in Fe-based compound LaFe10.6Si2.4. Appl. Phys. Lett. 77, 3072 (2000)

    ADS  Article  Google Scholar 

  47. 47.

    Khlifa, H., M’nassri, B.R., Cheikhrouhou-Koubaa, W., Schmerber, G., Leuvrey, C., Ulhaq-Bouillet, C., Dinia, A., Cheikhrouhou, A.: Structural characterization and magnetic field dependence of the magnetocaloric properties in Pr0.8Na0.05K0.15MnO3 ceramic. J. Magn. Magn. Mater. 439, 148 (2017)

    ADS  Article  Google Scholar 

  48. 48.

    Tlili, R., Hammouda, R., Bejar, M., Dhahri, E.: Theoretical investigation of the magnetocaloric effect on La0.7(Ba,Sr)0.3Mn0.9Ga0.1O3 compound at room temperature. J. Magn. Magn. Mater. 386, 81 (2015)

    ADS  Article  Google Scholar 

  49. 49.

    Gharsallah, H., Bejar, M., Dhahri, E., Hlil, E.K., Bessais, L.: Prediction of magnetocaloric effect in La0.6Ca0.4−xSrxMnO3 compounds for x = 0, 0.05 and 0.4 with phenomenological model. Ceram. Int. 42, 697 (2016)

    Article  Google Scholar 

  50. 50.

    Phong, P.T., Dang, N.V., Nam, P.H., Phong, L.T.H., Manh, D.H., An, N.M., Lee, I.-J.: Prediction of magnetocaloric effect in La0.8SrxCa0.2−xMnO3 compounds (x = 0.05, 0.1 and 0.15) with a first-order magnetic phase transition. J. Alloys Compd. 683, 67 (2016)

    Article  Google Scholar 

  51. 51.

    Dhahri, A., Jemmali, M., Dhahri, E., Valente, M.A.: Structural characterization, magnetic, magnetocaloric properties and phenomenological model in manganite La0.75Sr0.1Ca0.015MnO3 compound. J. Alloys Compd. 638, 221 (2015)

    Article  Google Scholar 

  52. 52.

    Zouari, R., Chehaidar, A.: A review of a phenomenological model for magnetocaloric effect in ferromagnetic materials. Phase Transit. 90, 167 (2017)

    Article  Google Scholar 

  53. 53.

    Kharrat, A., Jazia, B., Bourouina, M., Chniba-Boudjada, N., Boujelben, W.: Critical behaviour of Pr0.5-xGdxSr0.5MnO3 (0≤ x≤ 0.1) manganite compounds: correlation between experimental and theoretical considerations. Solid State Sci. 87, 27 (2019)

    ADS  Article  Google Scholar 

  54. 54.

    Hsini, M., Hcini, S., Zemni, S.: Magnetocaloric effect studying by means of theoretical models in Pr0.5Sr0.5MnO3 manganite. J. Magn. Magn. Mater. 466, 368 (2018)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The present work was carried out under the collaborative research project number CRS-M-240. Authors are thankful to Dr. P. D. Babu for the magnetization measurements and to Dr. S. Rayaprol and M. Venugopal (UGC-DAE-CSR, Mumbai) for their help with high-energy planetary ball milling.

Funding

A.D is thankful to DST India for providing Inspire Fellowship through grant number IF 170553.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mamatha Daivajna.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Souza, A.D., Daivajna, M. Magnetocaloric Properties of Nanostructured La0.7-xBixSr0.3MnO3 (x = 0.0, 0.1) Manganites Using Phenomenological Model. J Supercond Nov Magn 33, 1781–1788 (2020). https://doi.org/10.1007/s10948-020-05428-y

Download citation

Keywords

  • Milling
  • Grain size
  • Magnetic entropy
  • Magnetocaloric effect
  • Theoretical model