Skip to main content

Advertisement

Log in

Vibration Suppression of High-Temperature Superconducting Maglev System via Electromagnetic Shunt Damper

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The high-temperature superconducting (HTS) maglev system is characterized with self-stable levitation, low energy consumption, and pollution-free operation, and it has been considered as a promising technology for implementing high-speed transport systems. But the previous studies have shown that the damping of such system is relatively low, which indicates the large-amplitude nonlinear vibration may occur easily under external disturbances and affect the long-term motion stability, operation safety, and comfort of HTS maglev in rail transit application. In order to suppress the harmful vibration, an electromagnetic shunt damper (EMSD) was designed and incorporated into the HTS maglev system. Compared with other systems which employ the EMSD to diminish the vibration, the HTS maglev system does not need to set up external devices to supply magnetic field for the damper, because the permanent magnet guideway (PMG) in this system is directly taken advantages of. The natural frequency of the damper is adjusted to a value close to that of the maglev system. In this way, the damper becomes most effective because the moving vehicle body and the circuit resonate simultaneously. The feasibility of the damper was demonstrated through systematic experiments, and the effects of different field cooling heights (FCHs) of the HTS maglev system on EMSD’s performance were experimentally studied as well. Also, how the change of resistors in the EMSD circuit affects its working efficiency was preliminarily explored in this work. The results show that under the definite external disturbance, the damper can effectively attenuate the acceleration of vibration, furthermore, and it is found that the damper works better in condition of lower FCH. Within the scope of our experiments, the EMSD with a resistor in lower resistance performs better as results have shown. This investigation indicates that the vehicle will run in a more smooth and comfortable way along the track with this damper. The work is important for the further practical application of the technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hull, J.R.: Superconducting bearings. Supercond. Sci. Technol. 13(2), R1–R15 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  2. Werfel, F.N., Floegel-Delor, U., Rothfeld, R., Goebel, B., Wippich, D., Schirrmeister, P.: Superconductor bearings, flywheels and transportation. Supercond. Sci. Technol. 25(1), 014007 (2012)

    Article  ADS  Google Scholar 

  3. Wang, J.S., Wang, S.Y., Zeng, Y.W., Huang, H.Y., Luo, F., Xu, Z.P., Tang, Q.X., Lin, G.B., Zhang, C.F., Ren, Z.Y., Zhao, G.M., Zhu, D.G., Wang, S.H., Jiang, H., Zhu, M., Deng, C.Y., Hu, P.F., Li, C.Y., Liu, F., Lian, J.S., Wang, X.R., Wang, L.H., Shen, X.M., Dong, X.G.: The first man-loading high temperature superconducting maglev test vehicle in the world. Physica C. 378-381, 809–814 (2002)

    Article  ADS  Google Scholar 

  4. Deng, Z.G., Zhang, W.H., Zheng, J., Ren, Y., Jiang, D.H., Zheng, X.X., Zhang, J.H., Gao, P.F., Lin, Q.X., Song, B., Deng, C.Y.: A high-temperature superconducting maglev ring test line developed in Chengdu, China. IEEE Trans. Appl. Supercond. 26(6), 3602408 (2016)

    Article  Google Scholar 

  5. Deng, Z.G., Zhang, W.H., Zheng, J., Wang, B., Ren, Y., Zheng, X.X., Zhang, J.H.: A high-temperature superconducting maglev-evacuated tube transport (HTS maglev-ETT) test system. IEEE Trans. Appl. Supercond. 27(6), 3602008 (2017)

    Article  Google Scholar 

  6. Schultz, L., de Haas, O., Verges, P., Beyer, C., Rohlig, S., Olsen, H., Kuhn, L., Berger, D., Noteboom, U., Funk, U.: Superconductively levitated transport system—the SupraTrans project. IEEE Trans. Appl. Supercond. 15(2), 2301–2305 (2005)

    Article  ADS  Google Scholar 

  7. Sotelo, G.G., de Oliveira, R., Costa, F., Dias, D., de Andrade Jr., R., Stephan, R.: A full scale superconducting magnetic levitation (MagLev) vehicle operational line. IEEE Trans. Appl. Supercond. 25(3), 3601005 (2015)

    Article  Google Scholar 

  8. Kovalev, K.L., Koneev, S.M.-A., Poltavec, V.N., Gawalek, W.: Magnetically levitated high-speed carriages on the basis of bulk HTS elements, in Proc. 8th Int. Symp. Magn. Suspension Technol., Dresden, Germany (2005) p. 51.

  9. D’Ovidio, G., Crisi, F., Lanzara, G.: A V shaped superconducting levitation module for lift and guidance of a magnetic transportation system. Physica C. 468(14), 1036–1040 (2008)

    Article  ADS  Google Scholar 

  10. Stephan, R.M., de Andrade, R., dos Santos, G.C., Neves, M.A., Nicolsky, R.: Levitation force and stability of superconducting linear bearings using NdFeB and ferrite magnets. Physica C. 386, 490–494 (2003)

    Article  ADS  Google Scholar 

  11. Yang, W.J., Liu, Y., Wen, Z., Chen, X.D., Duan, Y.: Hysteresis force loss and damping properties in a practical magnet-superconductor maglev test vehicle. Supercond. Sci. Technol. 21(1), 015014 (2008)

    Article  ADS  Google Scholar 

  12. Arai, Y., Seino, H., Nagashima, K.: Levitation properties of superconducting magnetic bearings using superconducting coils and bulk superconductors. Supercond. Sci. Technol. 23(11), 115011 (2010)

    Article  ADS  Google Scholar 

  13. Teshima, H., Tanaka, M., Miyamoto, K., Nohguchi, K., Hinata, K.: Effect of eddy current dampers on the vibrational properties in superconducting levitation using melt processed YBaCuO bulk superconductors. Physica C. 274(1–2), 17–23 (1997)

    Article  ADS  Google Scholar 

  14. Teshima, H.: Combination of additional noncontact dampers and superconducting levitation using melt-processed YBaCuO bulk superconductors. Jpn. J. Appl. Phys. 36(1A), 68–75 (1997)

    Article  ADS  Google Scholar 

  15. Zheng, J., Deng, Z., Zhang, Y., Wang, W., Wang, S.Y., Wang, J.S.: Performance improvement of high temperature superconducting maglev system by eddy current damper. IEEE Trans. Appl. Supercond. 19(3), 2148–2151 (2009)

    Article  ADS  Google Scholar 

  16. Jiang, Z.F., Gou, X.F.: Eddy damping effect of additional conductors in superconducting levitation systems. Physica C. 519, 112–117 (2015)

    Article  ADS  Google Scholar 

  17. Behrens, S., Fleming, A.J., Moheimani, S.O.R.: Passive vibration control via electromagnetic shunt damping. IEEE-ASME Trans. Mechatron. 10(1), 118–122 (2005)

    Article  Google Scholar 

  18. Pei, Y.L., Liu, Y.L., Zuo, L.: Multi-resonant electromagnetic shunt in base isolation for vibration damping and energy harvesting. J. Sound Vibr. 423, 1–17 (2018)

    Article  ADS  Google Scholar 

  19. Sun, H.X., Luo, Y.F., Wang, X.Y., Zuo, L.: Seismic control of a SDOF structure through electromagnetic resonant shunt tuned mass-damper-inerter and the exact H-2 optimal solutions. J. Vibroeng. 19(3), 2063–2079 (2017)

  20. Stabile, A., Aglietti, G.S., Richardson, G., Smet, G.: A 2-collinear-DoF strut with embedded negative-resistance electromagnetic shunt dampers for spacecraft micro-vibration. Smart Mater. Struct. 26(4), 045031 (2017)

    Article  ADS  Google Scholar 

  21. Jung, J.H., Cheng, T.H., Oh, I.K.: Electromagnetic synchronized switch damping for vibration control of flexible beams. IEEE-ASME Trans. Mechatron. 13(6), 1031–1038 (2012)

    Article  Google Scholar 

  22. Cheng, T.H., Oh, I.K.: Vibration suppression of flexible beam using electromagnetic shunt damper. IEEE-ASME Trans. Mechatron. 45(6), 2758–2761 (2009)

    ADS  Google Scholar 

  23. Sasaki, M., Sugiura, T.: Vibration reduction of rotor supported by superconducting magnetic bearing utilizing electromagnetic shunt damper. IEEE Trans. Appl. Supercond. 26(3), 8801204 (2016)

    Google Scholar 

  24. Sasaki, M., Sugiura, T.: Effect of parameters of an electromagnetic shunt damper on whirling amplitude reduction of a rotor supported by a superconducting magnetic bearing. IEEE Trans. Appl. Supercond. 27(4), 3601005 (2017)

    Article  Google Scholar 

  25. Sasaki, M., Kimura, J., Sugiura, T.: Vibration suppression in high-T-c superconducting levitation system utilizing nonlinearly coupled electromagnetic shunt damper. IEEE Trans. Appl. Supercond., Vol. 25(3), 3700605 (2015)

    Google Scholar 

  26. Inoue, T., Ishida, Y., Sumi, M.: Vibration suppression using electromagnetic resonant shunt damper. J. Vibration Acoust. 130(4), 041003 (2008)

    Article  Google Scholar 

  27. Deng, Z.G., Li, J.P., Zhang, W.H., Gou, Y.F., Ren, Y., Zheng, J.: High-temperature superconducting magnetic levitation vehicle: dynamic characteristics while running on a ring test line. IEEE Veh. Technol. Mag. 12(3), 95–102 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Science and Technology Partnership Program, Ministry of Science and Technology of China, the National Natural Science Foundation of China (51875485), the Sichuan Youth Science and Technology Fund (2016JQ0039), the Fundamental Research Funds for the Central Universities (2682018CX72), and the State Key Laboratory of Traction Power at Southwest Jiaotong University (2018TPL_T06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zigang Deng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Deng, Z., Li, H. et al. Vibration Suppression of High-Temperature Superconducting Maglev System via Electromagnetic Shunt Damper. J Supercond Nov Magn 32, 2819–2828 (2019). https://doi.org/10.1007/s10948-019-5050-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-5050-3

Keywords

Navigation