Theoretical Modeling of the Non-equilibrium Amorphous State in 1T-TaS2


1T-TaS2 is known for it’s remarkably complex phase diagram and it’s unique long-lived metastable hidden (H) state. Recently, a novel metastable state has been discovered using higher fluences for photoexcitation than in the case of the H state. The state has been dubbed as amorphous (A) due to it’s similarity to glass. Expanding on the work of Brazovskii and Karpov, we show that the A state can be successfully modeled with classical interacting polarons on a two dimensional hexagonal lattice. We have found that the polaron configuration of the A state corresponds to a frustrated screened Coulomb system, where there is no order-disorder phase transition.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Spijkerman, A., de Boer, J.L., Meetsma, A., Wiegers, G.A., van Smaalen, S.: X-ray crystal-structure refinement of the nearly commensurate phase of 1 t- tas 2 in (3 + 2)-dimensional superspace. Phys. Rev. B 56(21), 13757 (1997)

    ADS  Article  Google Scholar 

  2. 2.

    Fazekas, P., Tosatti, E.: Electrical, structural and magnetic properties of pure and doped 1t-tas2. Philos. Mag. B 39(3), 229 (1979)

    ADS  Article  Google Scholar 

  3. 3.

    Rossnagel, K., Smith, N.: Spin-orbit coupling in the band structure of reconstructed 1 t- tas 2. Phys. Rev. B 73(7), 073106 (2006)

    ADS  Article  Google Scholar 

  4. 4.

    Withers, R., Wilson, J.: An examination of the formation and characteristics of charge-density waves in inorganic materials with special reference to the two-and one-dimensional transition-metal chalcogenides. J. Phys. C Solid State Phys. 19(25), 4809 (1986)

    ADS  Article  Google Scholar 

  5. 5.

    Sipos, B., Kusmartseva, A.F., Akrap, A., Berger, H., Forró, L., Tutiš, E.: From mott state to superconductivity in 1T-TaS2. Nat. Mater. 7(12), 960 (2008)

    ADS  Article  Google Scholar 

  6. 6.

    Thompson, A., Gamble, R., Revelli, J.: Transitions between semiconducting and metallic phases in 1-t tas2. Solid State Commun. 9(13), 981 (1971)

    ADS  Article  Google Scholar 

  7. 7.

    Klanjšek, M. , Zorko, A. , Mravlje, J., Jagličić, Z., Biswas, P.K., Prelovšek, P., Mihailovic, D., Arčon, D., et al.: A high-temperature quantum spin liquid with polaron spins. Nature Physics (2017)

  8. 8.

    Brazovskii, S.: Modeling of evolution of a complex electronic system to an ordered hidden state: Application to optical quench in 1T-TaS2. J. Supercond. Nov. Magn. 28(4), 1349 (2015)

    Article  Google Scholar 

  9. 9.

    Stojchevska, L., Vaskivskyi, I., Mertelj, T., Kusar, P., Svetin, D., Brazovskii, S., Mihailovic, D.: Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344(6180), 177 (2014)

    ADS  Article  Google Scholar 

  10. 10.

    Karpov, P., Brazovskii, S.: Modeling of networks and globules of charged domain walls observed in pump and pulse induced states. Sci. Rep. 8(1), 4043 (2018)

    ADS  Article  Google Scholar 

  11. 11.

    Wellein, G., Fehske, H.: Polaron band formation in the holstein model. Phys. Rev. B 56(8), 4513 (1997)

    ADS  Article  Google Scholar 

  12. 12.

    Bonča, J., Trugman, S., Batistić, I.: Holstein polaron. Phys. Rev. B 60(3), 1633 (1999)

    ADS  Article  Google Scholar 

  13. 13.

    De Raedt, H., Lagendijk, A.: Numerical calculation of path integrals: the small-polaron model. Phys. Rev. B 27(10), 6097 (1983)

    ADS  Article  Google Scholar 

  14. 14.

    Davydov, A.S.: Solitons in molecular systems. Phys. Scr. 20(3–4), 387 (1979)

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    Jeckelmann, E., White, S.R.: Density-matrix renormalization-group study of the polaron problem in the holstein model. Phys. Rev. B 57(11), 6376 (1998)

    ADS  Article  Google Scholar 

  16. 16.

    Li, X., Tully, J.C., Schlegel, H.B., Frisch, M.J.: Ab initio ehrenfest dynamics. J. Chem. Phys. 123 (8), 084106 (2005)

    ADS  Article  Google Scholar 

  17. 17.

    Donati, G., Lingerfelt, D.B., Petrone, A., Rega, N., Li, X.: watching polaron pair formation from first-principles electron–nuclear dynamics. J. Phys. Chem. A 120(37), 7255 (2016)

    Article  Google Scholar 

  18. 18.

    Polkehn, M., Eisenbrandt, P., Tamura, H., Burghardt, I.: Quantum dynamical studies of ultrafast charge separation in nanostructured organic polymer materials: Effects of vibronic interactions and molecular packing. Int. J. Quantum Chem. 118(1), e25502 (2018)

    Article  Google Scholar 

  19. 19.

    Beck, M.H., Jäckle, A., Worth, G., Meyer, H.D.: The multiconfiguration time-dependent hartree (mctdh) method: a highly efficient algorithm for propagating wavepackets. Phys. Rep. 324(1), 1 (2000)

    ADS  Article  Google Scholar 

  20. 20.

    Wang, H., Thoss, M.: Multilayer formulation of the multiconfiguration time-dependent hartree theory. J. Chem. Phys. 119(3), 1289 (2003)

    ADS  Article  Google Scholar 

  21. 21.

    Tanimura, Y., Kubo, R.: Time evolution of a quantum system in contact with a nearly gaussian-markoffian noise bath. J. Physical Soc. Japan 58(1), 101 (1989)

    ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    Chen, L., Zhao, Y., Tanimura, Y.: Dynamics of a one-dimensional holstein polaron with the hierarchical equations of motion approach. J. Phys. Chem. Lett. 6(15), 3110 (2015)

    Article  Google Scholar 

  23. 23.

    Petrone, A., Lingerfelt, D.B., Williams-Young, D.B., Li, X.: Ab initio transient vibrational spectral analysis. J. Phys. Chem. Lett. 7(22), 4501 (2016)

    Article  Google Scholar 

  24. 24.

    Petrone, A., Goings, J.J., Li, X.: Quantum confinement effects on optical transitions in nanodiamonds containing nitrogen vacancies. Phys. Rev. B 94(16), 165402 (2016)

    ADS  Article  Google Scholar 

  25. 25.

    Stein, J.L., Steimle, M.I., Terban, M.W., Petrone, A., Billinge, S.J., Li, X., Cossairt, B.M.: Cation exchange induced transformation of inp magic-sized clusters. Chem. Mater. 29(18), 7984 (2017)

    Article  Google Scholar 

  26. 26.

    Gerasimenko, Y., Vaskivskyi, I., Ravnik, J., Vodeb, J., Kabanov, V.V., Mihailovic, D.: Ultrafast jamming of electrons into an amorphous entangled state. arXiv:1803.00255 (2018)

  27. 27.

    Rossnagel, K.: On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys. Condens. Matter 23(21), 213001 (2011)

    ADS  Article  Google Scholar 

  28. 28.

    Alexandrov, A.S., Mott, N.F.: Polarons & Bipolarons. World Scientific, Singapore (1995)

    Google Scholar 

  29. 29.

    Monte carlo code. Accessed: 2018–09-20

  30. 30.

    Lee, S.J., Kim, B., Lee, J.: Infinite ground state degeneracy and glassy dynamics in the frustrated xy model and lattice coulomb gas with f = 16. Physica A: Statistical Mechanics and its Applications 315(1), 314 (2002)

    ADS  Article  Google Scholar 

  31. 31.

    Rademaker, L., Pramudya, Y., Zaanen, J., Dobrosavljević, V.: Influence of long-range interactions on charge ordering phenomena on a square lattice. Phys. Rev. E 88(3), 032121 (2013)

    ADS  Article  Google Scholar 

  32. 32.

    Pokrovsky, V., Uimin, G.: On the properties of monolayers of adsorbed atoms. J. Phys. C Solid State Phys. 11(16), 3535 (1978)

    ADS  Article  Google Scholar 

Download references


We wish to thank Tomaz Mertelj for the useful discussions. The work was supported by ERC-2012-ADG20120216 “Trajectory” and the Slovenian Research Agency (program P1-0040 and young researcher P0-8333).

Author information



Corresponding author

Correspondence to Jaka Vodeb.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vodeb, J., Kabanov, V.V., Gerasimenko, Y.A. et al. Theoretical Modeling of the Non-equilibrium Amorphous State in 1T-TaS2. J Supercond Nov Magn 32, 3057–3063 (2019).

Download citation


  • Charge density waves
  • Polarons
  • Lattice gas model
  • Monte Carlo simulations