Exploring the Structural, Dielectric and Magnetic Properties of 5 Mol% Bi3+-Substituted CoCr2O4 Nanoparticles


In the present work for the first time, we report in-depth structural, electrical, optical and magnetic properties of a family of cobalt chromate nanoparticles with 5 mol% Bi3+ substitution of the average crystallite size of 15 nm, fabricated by a solution combustion method using urea and glucose as a fuel. Co0.95Bi0.05Cr2O4 shows a single phase with spinel cubic structure with a space group of Fd3m with a lattice parameter of 8.334 Å. The morphology of the family of Bi3+-doped CoCr2O4 shows a highly porous nature. Transmission electron microscopy (TEM) shows samples are in nano size, i.e. 22 nm with well crystalline nature. The energy gap was estimated by using UV spectrum and found in the range of 3.86 eV. Temperature-dependent dielectric constant (ε′), dielectric loss (ε″) and loss tangent (tan δ) are explained by using Maxwell–Wagner and Koop’s phenomenological theory. The evolution of magnetic behaviour was studied as a function of temperature and magnetic field to study the magnetic transitions such as paramagnetic to long-range collinear ferrimagnetism transitions, and it was found at 98 K and non-collinear ferrimagnetism at 26 K. M−H loop at 300 K nearly shows a paramagnetic phase at 98 K, and it clearly suggests that samples exhibit superparamagnetic nature.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18


  1. 1.

    Fiebig, M.: Revival of the magnetoelectric effect. J. Phys. D. Appl. Phys. 38, R123 (2005)

    ADS  Article  Google Scholar 

  2. 2.

    Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., Tokura, Y.: Reversible magnetic domain-wall motion under an electric filed in a magnetoelectric thin film. Nature. 426, 55 (2003)

    ADS  Article  Google Scholar 

  3. 3.

    2.Srinivasamurthy, K.M., Manjunatha, K., Sitalo, E.I., Kubrin, S.P., Sathish, I.C., Matteppanavar, S., Rudraswamy, B., Angadi, V.J.: Effect of Ce3+ substitution on the structural, morphological, dielectric, and impedance spectroscopic studies of Co–Ni ferrites for automotive applications. Indian J. Phys. 1, 1–12 (2019). https://doi.org/10.1007/s12648-019-01495-7

    Article  Google Scholar 

  4. 4.

    Eerenstein, W., Mathur, N.D., Scott, J.F.: Multiferroic and magnetoelectric materials. Nature. 442, 759 (2006)

    ADS  Article  Google Scholar 

  5. 5.

    Manjunatha, K., Srininivasamurthy, K.M., Naveen, C.S., Ravikiran, Y.T., Sitalo, E.I., Kubrin, S.P., Matteppanavar, S., Reddy, N.S., Angadi, V.J.: Observation of enhanced humidity sensing performance and structure, dielectric, optical and DC conductivity studies of scandium doped cobalt chromate. Journal of Materials Science: Materials in Electronics. 30(2019), 17202–17217

  6. 6.

    Jagadish K, Galivarapu, D. Kumar, A. Banerjee, Chandana Rath, Magnetic transitions in chemically synthesized nanoparticles of CoCr2O4, IEEE Trans. Magn., 52 (2016) 8

  7. 7.

    Kassem, M.A., El-Fadl, A.A., Nashaat, A.M., Nakamura, H.: Structure, optical and varying magnetic properties of insulating MCr2O4 (M = Co, Zn, Mg and Cd) nanospinels. Journal of Alloys and Compounds. 790, 853–862 (2019)

    Article  Google Scholar 

  8. 8.

    Gilabert, J., Aapalacios, V.S., Mestre, S.: Solution combustion synthesis of (Co, Ni)Cr2O4 pigments: influence of initial solution concentration. Ceram. Int. 43, 10032–10040 (2017)

    Article  Google Scholar 

  9. 9.

    Hankare, P.P., Sankpal, U.B., Patil, R.P., Mulla, I.S., Lokhande, P.D., Gajbhiye, N.S.: Synthesis and characterization of CoCrxFe2-xO4 nanoparticles. J. Alloys Compd. 485, 798–801 (2009)

    Article  Google Scholar 

  10. 10.

    Srinivasamurthy, K.M., Jagadeesha, A.V., Kubrin, S.P., Matteppanavar, S., Sarychev, D.A., Kumar, P.M., Azale, H.W., Rudraswamy, B.: Tuning of ferrimagnetic nature and hyperfine interaction of Ni2+ doped cobalt ferrite nanoparticles for power transformer applications. Ceramics International. 44, 9194–9203 (2018)

    Article  Google Scholar 

  11. 11.

    Chamyani, S., Salehirad, A., Oroujzadeh, N., Fateh, D.S.: Effect of fuel type on structural and physicochemical properties of solution combustion synthesized CoCr2O4 ceramic pigment nanoparticles. Ceramics International. 44, 7754–7760 (2018)

    Article  Google Scholar 

  12. 12.

    Manjunatha, K., Sathish, I.C., Kubrin, S.P., Kozakov, A.T., Lastovina, T.A., Nikolskii, A.V., Srinivasamurthy, K.M., Pasha, M., Angadi, V.J.: X-ray photoelectron spectroscopy and low temperature Mössbauer study of Ce3+ substituted MnFe2O4. Journal of Materials Science: Materials in Electronics. 30, 10162–10171 (2019)

    Google Scholar 

  13. 13.

    Madhu, B.J., Jagadeesha Angadi, V., Mallikarjuna, H., Manjunatha, S.O., Shruthi, B., Madhu Kumar, R.: Dielectric behavior and A. C. conductivity studies on nickel nanoferrites synthesized by solution combustion method. Advance Material Reasearch. 584, 299–302 (2012)

    Google Scholar 

  14. 14.

    Seevakan, K., Manikandan, A., Devendran, P., Slimani, Y., Baykal, A., Alagesan, T.: Structural, magnetic and electrochemical characterizations of Bi2Mo2O9 nanoparticle for supercapacitor application. J. Magn. Magn. Mater. 486, 165254 (2019)

    Article  Google Scholar 

  15. 15.

    Slimani, Y., Selmi, A., Hannachi, E., Almessiere, M.A., Mumtaz, M., Bayka, A., Ercan, I.: Study of tungsten oxide effect on the performance of BaTiO3 ceramics. Journal of Materials Science: Materials in Electronics. 30(14), 13509–13518 (2019)

    Google Scholar 

  16. 16.

    Younisa, M., Saleemb, M., Atiqa, S., Naseema, S.: Magnetic phase transition and magneto-dielectric analysis of spinel chromites: MCr2O4 (M = Fe, Co and Ni). Ceram. Int. 44, 10229–10235 (2018)

    Article  Google Scholar 

  17. 17.

    Seevakan, K., Manikandan, A., Devendran, P., Slimani, Y., Baykal, A., Alagesan, T.: Structural, morphological and magneto-optical properties of CuMoO4 electrochemical nanocatalyst as supercapacitor electrode. Ceram. Int. 44, 20075–20083 (2018)

    Article  Google Scholar 

  18. 18.

    Lawrence, K., Mohanty, P., Shripathi, T., Rath, C.: Appearance of superparamagnetic phase below Curie temperature in cobalt chromite nanoparticles. Nanosci. Nanotechnol. Lett. 1, 199–203 (2009)

    Article  Google Scholar 

  19. 19.

    Gingasu, D., Mindru, I., Patron, L., Culita, D.C., Calderon-Moreno, J.M., Diamandescu, L., Feder, M., Oprea, O.: Precursor method—a non conventional route for the synthesis of ZnCr2O4 spinel. J. Phys. Chem. Solids. 74, 1295–1302 (2013)

    ADS  Article  Google Scholar 

  20. 20.

    Pratapkumar, C., Prashantha, S.C., Nagabhushana, H., Jnaneshwara, D.M.: Photoluminescence and photometric studies of low temperature prepared red emitting MgAl2O4:Cr3+ nanophosphors for solid state displays. Journal of Science: Advanced Materials and Devices. 3, 464–470 (2018)

    Google Scholar 

  21. 21.

    Slimani, Y., Unal, B., Hannachi, E., Selmi, A., Almessiere, M.A., Nawaz, M., Baykal, A., Ercan, I., Yildiz, M.: Frequency and dc bias voltage dependent dielectric properties and electrical conductivity of BaTiO3-SrTiO3/(SiO2)x nanocomposites. Ceram. Int. 45, 11989–12000 (2019)

    Article  Google Scholar 

  22. 22.

    Slimani, Y., Selmi, A., Hannachi, E., Almessiere, M.A., Baykal, A., Ercan, I.: Impact of ZnO addition on structural, morphological, optical, dielectric and electrical performances of BaTiO3 ceramics. J. Mater. Sci. Mater. Electron. 30, 9520–9530 (2019)

    Article  Google Scholar 

  23. 23.

    Abbasi, A., Hamadanian, M., Salavati-Niasari, M., Mazhari, M.P.: Hydrothermal synthesis, characterization and photodegradation of organic pollutants of CoCr2O4/Ag nanostructure and thermal stability of epoxy acrylate nanocomposite. Adv. Powder Technol. 28, 2756–2765 (2017)

    Article  Google Scholar 

  24. 24.

    Ikram, S., Arshad, M.I., Mahmood, K., Ali, A., Amin, N., Ali, N.: Tailoring the structural, magnetic and dielectric properties of Ni-Zn-CdFe2O4 spinel ferrites by the substitution of lanthanum ions. J. Alloys Compd. 769, 1019–1025 (2018)

    Article  Google Scholar 

  25. 25.

    Jagdeesha Angadi, V., Choudhury, L., Sadhana, K., Liu, H.-L., Sandhya, R., Matteppanavar, S., Rudraswamy, B., Pattar, V., Anavekar, R.V., Praveena, K.: Structural, electrical and magnetic properties of Sc3+ doped Mn-Zn ferrite nanoparticles. J Magnetism Magnetic Mater. 424, 1–11 (2017)

    ADS  Article  Google Scholar 

  26. 26.

    Chavan, P., Naik, L.R.: X-ray diffraction studies and dielectric properties of Ni doped Mg ferrites. Vacuum. 152, 47–49 (2018)

    ADS  Article  Google Scholar 

  27. 27.

    Batoo, K.M., Kumar, S., Lee, C.G., Alimuddin: Study of dielectric and ac impedance properties of Ti doped Mn ferrites. Curr. Appl. Phys. 9, 1397–1406 (2009)

    ADS  Article  Google Scholar 

  28. 28.

    Jagadeesha Angadi, V., Rudraswamy, B., Sadhana, K., Praveena, K.: Effect of Sm3+-Gd3+ co-doping on dielectric properties of Mn-Zn ferrites synthesized via combustion route. Materials Today: Proceedings. 3, 2178–2186 (2016)

    Google Scholar 

  29. 29.

    Almessiere, M.A., Unal, B., Slimani, Y., Demir Korkmaz, A., Algarou, N.A., Baykal, A.: Electrical and dielectric properties of Nb3+ ions substituted Ba-hexaferrites. Results Phys. 14, 102468 (2019)

    Article  Google Scholar 

  30. 30.

    Irfan, M., Islam, M., Ali, I., Iqbal, M., Karamat, N., Khan, H.: Effect of Y2O3 doping on the electrical transport properties of Sr2MnNiFe12O22 Y-type hexaferrite. Curr. Appl. Phys. 14, 112–117 (2014)

    ADS  Article  Google Scholar 

  31. 31.

    Almessiere, M.A., Unal, B., Slimani, Y., Korkmaz, A.D., Baykal, A., Ercana, I.: Electrical properties of La3+ and Y3+ ions substituted Ni0.3Cu0.3Zn0.4Fe2O4 nanospinel ferrites. Results Phys. 15, 102755 (2019)

    Article  Google Scholar 

  32. 32.

    Agami, W.R.: Effect of neodymium substitution on the electric and dielectric properties of Mn-Ni-Zn ferrite. Phys. B Condens. Matter. 534, 17–21 (2015)

    ADS  Article  Google Scholar 

  33. 33.

    Iikram, S., Rashad, I., Mahmood, K., Ali, A., Amin, N., Ali, N.: Structural, magnetic and dielectric study of La3+ substituted Cu0.8Cd0.2Fe2O4 ferrite nanoparticles synthesized by the co-precipitation method. Journal of Alloys and Compounds. 769, 1019–1025 (2018)

    Article  Google Scholar 

  34. 34.

    Ajmal, M., Islam, M.U., Asharaf, G.A., Nazir, M.A., Ghouri, M.I.: The influence of Ga doping on structural magnetic and dielectric properties of NiCr0.2Fe1.8O4 spinel ferrite. Physica B: Condensed Matter. 526, 149–154 (2017)

    ADS  Article  Google Scholar 

  35. 35.

    Ondruska, J., Csaki, S., Trnovcova, V., Stubna, I., Lukac, F., Pokorny, J., Vozar, L., Dobron, P.: Influence of mechanical activation on DC conductivity of kaolin. Appl. Clay Sci. 154, 36–42 (2018)

    Article  Google Scholar 

  36. 36.

    Unal, B., Almessiere, M., Demir Korkmaz, A., Slimani, Y., Baykal, A.: Effect of thulium substitution on conductivity and dielectric belongings of nanospinel cobalt ferrite. Journal of Rare Earths, online. (2019). https://doi.org/10.1016/j.jre.2019.09.011

  37. 37.

    Unal, B., Almessiere, M., Slimani, Y., Baykal, A., Trukhanov, A.V., Ercan, I.: The conductivity and dielectric properties of neobium substituted Sr-hexaferrites. Nanomaterials. 9, 1168 (2019)

    Article  Google Scholar 

  38. 38.

    Shanthala, V.S., Shobha Devi, S.N., Murugendrappa, M.V.: Article synthesis, characterization and DC conductivity studies of polypyrrole/copper zinc iron oxide nanocomposites. J. Asian Ceramic Soc. 5, 227–234 (2017)

    Article  Google Scholar 

  39. 39.

    Winkler, E., Blanco Canosa, S., Rivadulla, F., López-Quintela, M.A., Rivas, J., Caneiro, A., Causa, M.T., Tovar, M.: Magnetocrystalline interactions in MnCr2O4 spinel. Phys. Rev. B. 80, 104418 (2009)

    ADS  Article  Google Scholar 

  40. 40.

    Yamasaki, Y., Miyasaka, S., Kaneko, Y., He, J.-P., Arima, T., Tokura, Y.: Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide. Phys. Rev. Lett. 96, 207204 (2006)

    ADS  Article  Google Scholar 

  41. 41.

    Choi, Y.J., Okamoto, J., Huang, D.J., Chao, K.S., Lin, H.J., Chen, C.T., van Veenendaal, M., Kaplan, T.A., Cheong, S.W.: Thermally or magnetically induced polarization reversal in the multiferroic CoCr2O4. Phys. Rev. Lett. 102, 067601 (2009)

    ADS  Article  Google Scholar 

  42. 42.

    Arima, T., Yamasaki, Y., Goto, T., Iguchi, S., Ohgushi, K., Miyasaka, S., Tokura, Y.: Spin–lattice coupling in ferroelectric spiral magnets: comparison between the cases of (Tb,Dy)MnO3 and CoCr2O4. J. Phys. Soc. Jpn. 76, 023602 (2007)

    ADS  Article  Google Scholar 

  43. 43.

    Bordacs, S., Varjas, D., Kezsmarki, I., Mihaly, G., Baldassarre, L., Abouelsayed, A., Kuntscher, C.A., Ohgunshi, K., Tokura, Y.: Magnetic-order-induced crystal symmetry lowering in ACr2O4 ferrimagnetic spinels. Phys. Rev. Lett. 103, 077205 (2009)

    ADS  Article  Google Scholar 

  44. 44.

    Lawes, G., Melot, B., Page, K., Ederer, C., Hayward, M.A., Proffen, T., Seshadri, R.: Dielectric anomalies and spiral magnetic order in CoCr2O4. Phys. Rev. Lett. 74, 024413 (2006)

    ADS  Google Scholar 

  45. 45.

    Pronin, A.V., Uhlarz, M., Beyer, R., Fischer, T., Wosnitza, J., Gorshunov, B.P., Komandin, G.A., Prokhorov, A.S., Dressel, M., Bush, A.A., Torgashev, V.I.: B-T phase diagram of CoCr2O4 in magnetic fields up to 14 T. Phys. Rev. B. 85, 012101 (2012)

    ADS  Article  Google Scholar 

  46. 46.

    Fava, F.F., Baraille, I., Lichanot, A., Larrieu, C., Dovesi, R.: On the structural, electronics and magnetic properties of MnCr2O4 spinel. J. Phys. Condens. Matter. 9, 10715 (1997)

    ADS  Article  Google Scholar 

  47. 47.

    Tomiyasu, K., Fukunaga, J., Suzuki, H.: Magnetic short-range order and reentrant-spin-glass-like behavior in CoCr2O4 and MnCr2O4 by means of neutron scattering and magnetization measurements. Phys. Rev. B. 70, 214434 (2004)

    ADS  Article  Google Scholar 

  48. 48.

    Bharamagoudar, R., Matteppanavar, S., Patil, A.S., Pattar, V., Jagadeesha Angadi, V., Manjunatha, K.: Effect of Dy on structural and low temperature magnetic properties of Ca0.7Dy0.3MnO3. Chemical Data Collections. 24, 100288 (2019)

    Article  Google Scholar 

  49. 49.

    Galivarapu, J.K., Kumar, D., Banerjee, A., Sathe, V., Aquilanti, G., Rath, C.: Effect of size reduction on cation distribution and magnetic transitions in CoCr2O4 multiferroic: EXAFS, magnetic and diffused neutron scattering measurements. RSC Adv. 6, 63809–63819 (2016)

    Article  Google Scholar 

  50. 50.

    Angadi, V.J., Rudraswamy, B., Melagiriyappa, E., Shivaraj, Y., Matteppanavar, S.: Effect of Sm3+ substitution on structural and magnetic investigation of nano sized Mn–Sm–Zn ferrites. Indian J. Phys. 90, 881–885 (2016)

    ADS  Article  Google Scholar 

  51. 51.

    Almessiere, M.A., Slimani, Y., Korkmaz, A.D., Guner, S., Sertkol, M., Shirsath, S.E., Baykal, A.: Structural, optical and magnetic properties of Tm3+ substituted cobalt spinel ferrites synthesized via sonochemical approach. Ultrasonics – Sonochemistry. 54, 1–10 (2019)

    Article  Google Scholar 

  52. 52.

    Almessiere, M.A., Slimani, Y., Gungunes, H., Manikandan, A., Baykal, A.: Investigation of the effects of Tm3+ on the structural, microstructural, optical, and magnetic properties of Sr hexaferrites. Results Phys. 13, 102166 (2019)

    Article  Google Scholar 

  53. 53.

    Lakshmiprasanna, H.R., Jagadeesha Angadi, V., Babu, B.R., Pasha, M., Manjunatha, K., Matteppanavar, S.: Effect of Pr3+-doping on the structural, elastic and magnetic properties of Mn-Zn ferrite nanoparticles prepared by solution combustion synthesis method. Chemical Data Collections. 24, 100273 (2019)

    Article  Google Scholar 

  54. 54.

    Kumar, D., Mohanty, P., Singh, V.P., Galivarapu, J.K., Banerjee, A., Ganesan, V., Rath, C.: Tuning of magnetic transition temperatures in nanoparticles of CoCr2O4 multiferroic by B-site mixing. Mater. Res. Bull. 54, 78–83 (2014)

    Article  Google Scholar 

  55. 55.

    Slimani, Y., Almessiere, M.A., Nawaz, M., Baykal, A., Akhtar, S., Ercan, I., Belenli, I.: Effect of bimetallic (Ca, Mg) substitution on magneto-optical properties of NiFe2O4 nanoparticles. Ceram. Int. 45, 6021–6029 (2019)

    Article  Google Scholar 

Download references


Mr. Manjuntha K would like to express sincere thanks to Presidency University management for providing the JRF fellowship for pursuing Ph.D. programme. Dr. Jagadeesha Angadi V would like to express sincere thanks to the UGC-DAE CSR Kolkotta Centre for providing the magnetisation measurements. Further, authors are expressing deep thanks to Dr. H M Suresh Kumar for providing the instrument facility sponsored by the VGST Project CISEE-VGST/GRD-531/2016-17.

Author information



Corresponding author

Correspondence to V. Jagadeesha Angadi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manjunatha, K., Jagadeesha Angadi, V., Srinivasamurthy, K.M. et al. Exploring the Structural, Dielectric and Magnetic Properties of 5 Mol% Bi3+-Substituted CoCr2O4 Nanoparticles. J Supercond Nov Magn 33, 1747–1757 (2020). https://doi.org/10.1007/s10948-019-05403-2

Download citation


  • Chromates
  • Solution combustion method
  • Ferrimagnetism
  • Koop’s phenomenological theory