Skip to main content
Log in

Structural, Magnetocaloric, and Critical Behavior of La0.5Ca0.5Mn1−xVxO3 Manganites Prepared by High-Energy Ball Milling

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The high-energy ball milling method has been used to synthesize the polycrystalline powders La0.5Ca0.5Mn1−xVxO3 (x = 0.05, x = 0.10). The Rietveld refinement technique shows that the samples crystallized in the orthorhombic structure with the Pbnm space group. The La0.5Ca0.5Mn0.95V0.05O3 exhibits a second-order phase transition from paramagnetic (PM) to ferromagnetic (FM) state at TC = 208 ± 1 K followed by a second one from FM to charge ordering–antiferromagnetic state at TN = 150.0 ± 0.1 K when decreasing temperature. The substituted sample with 10% amount of vanadium dopant corresponds to the disappearance of the charge-order phase; meanwhile, it was suppressed for 5% of the vanadium in the solid-state route. The Curie temperature TC increases with vanadium content from 208 ± 1 K for x = 0.05 to 255 ± 1 K for x = 0.10. The values of the maximum of the magnetic entropy change under a magnetic field change of 5 T are found to be 2.95 ± 0.04 J kg−1 K−1 and 5.42 ± 0.07 J kg−1 K−1 corresponding to a relative cooling power RCP = 128.4 ± 0.3 and 220.8 ± 0.7 for x = 0.05 and x = 0.10 respectively. The order of phase transition has been determined. The critical exponent study has been performed for La0.5Ca0.5Mn0.9V0.10O3 by using the Arrott plot, Kouvel–Fisher method, and critical isotherm analysis. The measured β, γ, and δ values are in agreement with those expected for the tricritical mean-field model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Von Helmolt, R., Wecker, J., Holzapfel, B., Schultz, L., Samwer, K.: Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. Phys. Rev. Lett. 71, 2331 (1993)

    Article  ADS  Google Scholar 

  2. Jin, S., McCormack, M., Tiefel, T.H., Ramesh, R.: Colossal magnetoresistance in LaCaMnO ferromagnetic thin films. J. Appl. Phys. 76, 6929 (1994)

    Article  ADS  Google Scholar 

  3. Yoshizawa, H., Kawano, H., Tomioka, T., Tokura, Y.: Neutron-diffraction study of the magnetic-field-induced metal-insulator transition in Pr0.7Ca0.3MnO3. Phys. Rev. B. 52, 13145 (1995)

    Article  ADS  Google Scholar 

  4. Goodenough, J.B.: Phys. Rev. 164, 785 (1967)

    Article  ADS  Google Scholar 

  5. Schiffer, P., Ramires, A.P., Bao, W., Cheong, S.-W.: Low temperature magnetoresistance and the magnetic phase diagram of La 1− x Ca x MnO 3. Phys. Rew. Lett. 75, 3336 (1995)

    Article  ADS  Google Scholar 

  6. Hwang, H.Y., Cheong, S.-W., Radaelli, P.G., Marezio, M., Batlogg, B.: Lattice effects on the magnetoresistance in doped LaMnO3. Phys Rew Lett. 75, 914 (1995)

    Article  ADS  Google Scholar 

  7. Khondabi, M., Ahmadvand, H., Kameli, P., Amirzadeh, P., Salamati, H., Dasgupta, P., Poddar, A.: Magnetocaloric and phase coexistence in La0.5Ca0.5–xSrxMnO3 manganites. J. Appl. Phys. 118, 233908 (2015)

    Article  ADS  Google Scholar 

  8. Radaelli, P.G., Cox, D.E., Marezio, M., Cheong, S.-W.: Charge, orbital, and magnetic ordering in La0.5Ca0.5MnO3. Phys. Rev. B. 55, 3015 (1997)

    Article  ADS  Google Scholar 

  9. Rivadulla, F., Freita-Alvite, M., López-Quintela, M.A.: Coexistence of paramagnetic-charge-ordered and ferromagnetic-metallic phases in La0.5Ca0.5MnO3 evidenced by electron spin resonance. J. Appl. Phys. 91, 785 (2002)

    Article  ADS  Google Scholar 

  10. Amirzadeh, P., Ahmadvand, H., Kameli, P., Aslibeiki, B., Salamati, H., Gamzatov, A.G., Aliev, A.M., Kamilov, I.K.: Phase separation and direct magnetocaloric effect in La 0.5 Ca 0.5 MnO manganite. J. Appl. Phys. 113, 123904 (2013)

    Article  ADS  Google Scholar 

  11. Mehri, A., Cheikh-rouhou-Koubaa, W., Koubaa, M., Cheikh-rouhou, A.: Magnetic and magnetocaloric properties of monovalent substituted La0.5Ca0.45A0.05MnO3 (A = Na, Ag, K) perovskite manganites. Mater. Sci. Eng. 28, 012049 (2012)

    Google Scholar 

  12. Barnabe, A., Maignan, A., Hervieu, M., Damay, F., Martin, C., Raveau, B.: Extension of colossal magnetoresistance properties to small A site cations by chromium doping in Ln0.5Ca0.5MnO3 manganites. Appl. Phys. Lett. 71, 3907 (1997)

  13. Damay, F., Martin, C., Maignan, A., Raveau, B.: Charge and magnetic order suppression by Mn site doping in layered and three-dimensional manganites. J. Magn. Magn. Mater. 183, 143-151 (1998)Kuwahara, H., Tomioka, Y., Asamitsu, A., Moritomo, Y., Tokura, Y.: A first-order phase transition induced by a magnetic field. Science. 270, 5238 (1995)

  14. Kuwahara, H., Tomioka, Y., Asamitsu, A., Moritomo, Y., Tokura, Y.: A first-order phase transition induced by a magnetic field. Science. 270, 5238 (1995)

  15. Sarkar, T., Ghosh, B., Raychaudhuri, A.K.: Crystal structure and physical properties of half-doped manganite nanocrystals with size < 100nm. Phys. Rev. B. 77, 235112 (2008)

    Article  ADS  Google Scholar 

  16. ShankarAkhilesh, U., Singh, K.: Origin of suppression of charge ordering transition in nanocrystalline Ln0.5Ca0.5MnO3 (Ln = La, Nd, Pr) ceramics. Phys. Chem. C. 119, 51 (2015) 28620,28630

    Google Scholar 

  17. Mansouri, M., Omrani, H., Cheikhrouhou-Koubaa, W., Koubaa, M., Madouri, A., Cheikhrouhou, A.: Effect of vanadium doping on structural, magnetic and magnetocaloric properties of La0.5Ca0.5MnO3. J. Magn. Magn. Mater. 401, 593–599 (2015)

    Article  ADS  Google Scholar 

  18. Gencer, H., Kolat, V.S., Atalay, S.J.: Microstructure and magnetoresistance in La0.67Ca0.33Mn1−xVxO3 (x = 0, 0.03, 0.06, 0.1, 0.15 and 0.25) compound. J. Alloy. Compd. 422, 40 (2006)

    Article  Google Scholar 

  19. Zhao, T.S., Li, B.H., Han, G.: Magnetic, transport and microstructural properties of polycrystalline samples with nominal composition of La0.7Ca0.3Mn1−xVxO3 (0⩽x⩽0.2). J. Magn. Magn. Mater. 320, 924 (2008)

    Article  ADS  Google Scholar 

  20. Nisha, P., Santhosh, P.N., Suresh, K.G., Pavithran, C., Varma, M.R.: Near room temperature magneto caloric effect in V doped La0.67Ca0.33MnO3 ceramics. J. Alloy. Compd. 478, 566–571 (2009)

    Article  Google Scholar 

  21. Nisha, P., Savitha Pillai, S., Darbandi, A., Misra, A., Suresh, K.G., Raama Varma, M., Hahn, H.: Magnetism and magnetocaloric effect in nanocrystalline La0.67Ca0.33Mn0.9V0.1O3 synthesized by nebulized spray pyrolysis. J. Phys. D: Appl. Phys. 43, 135001 (2010)

    Article  ADS  Google Scholar 

  22. Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65 (1969)

    Article  Google Scholar 

  23. Roisnel, T., Rodriguez-Carvajal, J.: Computer program, F U L LP R O F, LLB-LCSIM (2003)

  24. Loudon, J.C., Mathur, N.D., Midgley, P.A.: Charge-ordered ferromagnetic phase in La0.5Ca0.5MnO3. Nature. 420, 797 (2002)

    Article  ADS  Google Scholar 

  25. Goodenough, J.B.: Phys. Rev. 100, 564 (1955)

    Article  ADS  Google Scholar 

  26. Rivadulla, F., Hueso, L.E., Miguens, D.R., Sande, P., Fondado, A., Rivas, J., Lopez-Quintela, M.A.: Coexistence of paramagnetic-charge-ordered and ferromagnetic-metallic phases in La0.5Ca0.5MnO3 evidenced by electron spin resonance. J. Appl. Phys. 9, 10 (2002)

    Google Scholar 

  27. Bohigas, X., Tejada, J., Marinez-Sarrion, M.L., Tripp, S., Black, R., Black, R.: Magnetic and calorimetric measurements on the magnetocaloric effect in La0.6Ca0.4MnO3. J. Magn. Magn. Mater. 208, 85–92 (2000)

    Article  ADS  Google Scholar 

  28. Phan, M.-H., Yu, S.-C.: Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325 (2007)

    Article  ADS  Google Scholar 

  29. Biswas, A., Samanta, T., Banerjee, S., Das, I.: Observation of large low field magnetoresistance and large magnetocaloric effects in polycrystalline Pr0.65(Ca0.7Sr0.3)0.35MnO3. Appl. Phys. Lett. 92, 012502 (2008)

    Article  ADS  Google Scholar 

  30. Franco, V., Blazquez, J.S., Conde, A.: Appl. Phys. Lett. 89, 222512 (2006)

    Article  ADS  Google Scholar 

  31. Murakami, S., Nagaosa, N.: Colossal magnetoresistance in manganites as a multicritical, phenomenon. Phys. Rev. Lett. 90, 197201 (2003)

    Article  ADS  Google Scholar 

  32. Arrott, A., Noakes, J.E.: Approximate equation of state for nickel near its critical temperature. Phys. Rev. Lett. 19, 786 (1967)

    Article  ADS  Google Scholar 

  33. Kaul, S.N.: Static critical phenomena in ferromagnets with quenched disorder. J. Magn. Magn. Mater. 53, 5 (1985)

    Article  ADS  Google Scholar 

  34. Zhang, L., Fang, J., Fan, J., Ge, M., Ling, L., Zhang, C., Pi, L., Tan, S., Zhang, Y.: J. Alloys Compd. 588, 294 (2014)

    Article  Google Scholar 

  35. Oumezzine, M., Peña, O., Kallel, S., Oumezzine, M.: Crossover of the magnetocaloric effect and its importance on the determination of the critical behaviour in the La0.67Ba0.33Mn0.9Cr0.1O3 perovskite manganite. J. Alloys Compd. 539, 116–123 (2012)

    Article  Google Scholar 

  36. Mleiki, A., Othmani, S., Cheikhrouhou-Koubaa, W., Koubaa, M., Cheikhrouhou, A., Hlil, E.K.: Critical behavior near the ferromagnetic–paramagnetic phase transition in compounds Sm0.55-xPrxSr0.45MnO3 (0.3 < x < 0.4). J. Alloys Compd. 648, 1043 (2015)

    Article  Google Scholar 

  37. Messaoui, I., Kumaresavanji, M., Riahia, K., Cheikhrouhou Koubaa, W.: Mohamed Koubaa, A. Cheikhrouhou, Magnetic, magnetocaloric and critical behavior study of La0.78Pb0.22MnO3 manganite near room-temperature. Ceram. Int. 43 A, 498–506 (2017)

    Article  Google Scholar 

  38. Fisher, M.E., Ma, S.K., Nickel, B.G.: Critical exponents for long-range interactions. Phys. Rev. Lett. 29, 917 (1972)

    Article  ADS  Google Scholar 

  39. Kouvel, J.S., Fisher, M.E.: Detailed magnetic behavior of nickel near its Curie point. Phys. Rev. 136, A1626 (1964)

    Article  ADS  Google Scholar 

  40. Widom, B.: Surface tension and molecular correlations near the critical point. J. Chem. Phys. 43, 3892 (1965)

    Article  ADS  Google Scholar 

  41. Kim, D., Revaz, B., Zink, B.L., Hellman, F., Rhyne, J.J., Mitchell, J.F.: Tricritical point and the doping dependence of the order of the ferromagnetic phase transition of La1−xCaxMnO3. Rev. Let. 89, 227202 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

M. Mansouri is grateful to the CIC nanoGUNE (Donostia-San Sebastian, Spain) and especially to Andreas Berger and all members of the nanomagnetism group.

Funding

This work was funded by the Tunisian Ministry of Higher Education and Scientific Research. L. Fallarino would like to thank the funding support from the Predoctoral program of the Basque Government through Grant. No. PRE_2015_2_0126.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moufida Mansouri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansouri, M., Fallarino, L., M’nassri, R. et al. Structural, Magnetocaloric, and Critical Behavior of La0.5Ca0.5Mn1−xVxO3 Manganites Prepared by High-Energy Ball Milling. J Supercond Nov Magn 33, 995–1005 (2020). https://doi.org/10.1007/s10948-019-05247-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05247-w

Keywords

Navigation