Skip to main content
Log in

Investigation to the Structural, Optical, and Magnetic Properties of Synthesized Ni-Doped Anatase Nanoparticles: Essential Role of Treatment in Hydrogen on Long-Range Ferromagnetic Order

  • Original Research
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Nanocomposite powders of anatase TiO2 doped with Ni ions (TiO2:Ni) were synthesized by facile thermal co-decomposition of a mixture of metals complexes. The X-ray diffraction (XRD) analyses using the Rietveld method confirm the formation of almost single nanocrystalline anatase structure. Anatase TiO2 incorporated with Ni ions (TiO2:Ni) illustrated the formation of a substitutional solid solutions (SSS). The diffuse reflection spectroscopy (DRS) method used to study the optical properties of the prepared samples revealed a redshift associated with Ni doping and hydrogenation, which is explained by the creation of point defects including O-vacancies. This study showed the essential importance of hydrogenation process in order to create or boost room-temperature ferromagnetism (RT-FM). The magnetic measurements indicated that anatase TiO2 doped with 4.8 mol% Ni produce a magnetic saturation of 0.84 emu/g, which is a remarkable result compared with that related to the similar studies on doped TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tian, J., Gao, H., Deng, H., Sun, L., Kong, H., Yang, P., Chu, J.: Structural, magnetic and optical properties of Ni-doped TiO2 thin films deposited on silicon(100) substrates by sol–gel process. J. Alloys Compd. 581, 318–323 (2013)

    Article  Google Scholar 

  2. Manzoor, M., Rafiq, A., Ikram, M., Nafees, M., Ali, S.: Int. Nano Lett. 8, 1–8 (2018)

    Article  Google Scholar 

  3. Dong, J., Han, J., Liu, Y., Nakajima, A., Matsushita, S., Wei, S., Gao, W.: Appl. Mater. Interfaces. 6, 1385–1388 (2018)

    Article  Google Scholar 

  4. Rana, A.G., Ahmad, W., Al-Matar, A., Shawabke, R., Aslam, Z.: Synthesis and characterization of Cu–Zn/TiO2for the photocatalytic conversion of CO2to methane. Environ. Technol. 38, 1085–1092 (2017)

    Article  Google Scholar 

  5. Bavykin, D.V., Parmon, V.N., Lapkin, A.A., Walsh, F.C.: The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J. Mater. Chem. 14, 3370–3377 (2004)

    Article  Google Scholar 

  6. Zhuang, H.F., Lin, C.J., Lai, Y.K., Sun, L., Li, J.: Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity. Environ. Sci. Technol. 41, 4735–4740 (2007)

    Article  ADS  Google Scholar 

  7. Ghicov, A., Macak, J.M., Tsuchiya, H., Kunze, J., Haeublein, V., Frey, L., Schmuki, P.: Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes. Nano Lett. 6, 1080–1082 (2006)

    Article  ADS  Google Scholar 

  8. Sun, L., Li, J., Wang, C., Li, S., Chen, H., Lin, C.: Activity. Sol. Energy. Mater. Sol. Cells. 93, 1875–1880 (2009)

    Article  Google Scholar 

  9. Chiarello, G.L., Aguirre, M.H., Selli, E.: Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2. J. Catal. 273, 182–190 (2010)

    Article  Google Scholar 

  10. Zhang, Y., Ma, H., Yi, M., Shen, Z., Yu, X., Zhang, X.: Magnetron-sputtering fabrication of noble metal nanodots coated TiO 2 nanoparticles with enhanced photocatalytic performance. Mater. Des. 125, 94–99 (2017)

    Article  Google Scholar 

  11. Chen, X., Mao, S.S.: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007)

    Article  Google Scholar 

  12. Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003)

    Article  ADS  Google Scholar 

  13. Xu, Y., Zhang, C., Zhang, L., Zhang, X., Yao, H., Shi, J.: Pd-catalyzed instant hydrogenation of TiO2with enhanced photocatalytic performance. Energy Environ. Sci. 9, 2410–2417 (2016)

    Article  Google Scholar 

  14. Abdelhamid Bouaine, G., Schmerber, D., Ihiawakrim, A.D.: Structural, optical, and magnetic properties of polycrystalline Co-doped TiO2 synthesized by solid-state method. Mater. Sci. Eng. B. 177, 1618–1622 (2012)

    Article  Google Scholar 

  15. Zhao, Y.L., Motapothula, M., Yakovlev, N.L., Liu, Z.Q., Dhar, S., Rusydi, A., Breese, M.B.H., Wang, Q., Venkatesan, T.: Reversible ferromagnetism in rutile TiO2single crystals induced by nickel impurities. Appl. Phys. Lett. 101, 142105 (2012)

    Article  ADS  Google Scholar 

  16. Tian, J., Leng, Y., Cui, H., Liu, H.: Hydrogenated TiO2 nanobelts as highly efficient photocatalytic organic dye degradation and hydrogen evolution photocatalyst. J. Hazard. Mater. 299, 165–173 (2015)

    Article  Google Scholar 

  17. Lusvardi, G., Barani, C., Giubertoni, F., Paganelli, G.: Synthesis and characterization of TiO2 nanoparticles for the reduction of water pollutants. Materials (Basel). 10, 1208 (11 pages) (2017)

    Article  ADS  Google Scholar 

  18. Hanawalt, J.D., Rinn, H.W., Frevel, L.K.: Ind. Eng. Anal. Chem. 10, 475–512 (1938)

    Article  Google Scholar 

  19. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A. 32, 751–767 (1976)

    Article  ADS  Google Scholar 

  20. Kittel, C.: Introduction to solid state physics, p. 425. John Wiley &Sons, NY (1996)

    Google Scholar 

  21. McCusker, L.B., Von Dreele, R.B., Cox, D.E., Louer, D., Scardi, P.: Rietveld refinement guidelines. J. Appl. Crystallogr. 32, 36–50 (1999)

    Article  Google Scholar 

  22. Khorsand Zak, A., Abd Majid, W.H., Abrishami, M.E., Yousefi, R.: X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci. 13, 251–256 (2011)

    Article  ADS  Google Scholar 

  23. Kubelka, P., Munk, F.: Ein Beitrag Zur Optik Der Farbanstriche. Z. Tech. Phys. 12, 593–601 (1931)

    Google Scholar 

  24. Pozzo, M., Alfe, D.: Hydrogen dissociation and diffusion on transition metal (=Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) surfaces. Int. J. Hydrog. Energy. 34, 1922–1930 (2009)

    Article  ADS  Google Scholar 

  25. Ahmad, S., Khan, W., Raushan, A.: Synthesis and characterization of Ni doped TiO2 nanoparticles by sol-gel method, conference: international conference on advanced materials for power engineering at: MGU. Kottayam Kerala, India (2015)

    Google Scholar 

  26. Hanaor Dorian, A.H., Assadi Mohammed, H.N., Sean, L., Aibing, Y., Sorrell Charles, C.: Ab initio study of phase stability in doped TiO2. Comput. Mech. 50, 185–194 (2012)

    Article  Google Scholar 

  27. Wang, H., Wei, J., Xiong, R., Shi, J., Magn, J.: Magn. Mater. 324, 2057–2061 (2012)

    Article  ADS  Google Scholar 

  28. Kumar, A., Kashyap, M.K., Sabharwal, N., Kumar, S., Kumar, A., Kumar, P., Asokan, K.: Structural, optical and weak magnetic properties of Co and Mn codoped TiO 2 nanoparticles. Solid State Sci. 73, 19–26 (2017)

    Article  ADS  Google Scholar 

  29. Zhou, S., Cizmar, E., Potzger, K., Krause, M., Talut, G., Helm, M., Fassbender, J., Zvyagin, S.A., Wosnitza, J., Schmidt, H.: Origin of magnetic moments in defectiveTiO2single crystals. Phys. Rev. B. 79, 113201 (4 pages) (2009)

    Article  ADS  Google Scholar 

  30. The web page of the University of the West Indies at Mona, Jamaica, The Dept. of Chemistry, http://wwwchem.uwimona.edu.jm/spectra/MagMom.html. Accessed Sept 2018

  31. Cheng, S.-J.: Magnetic response of magnetic ion-doped nanocrystals: effects of singleMn2+impurity. Phys. Rev. B. 72, 235332 (2005)

    Article  ADS  Google Scholar 

  32. Tolea, F., Grecu, M.N., Kuncser, V., Constantinescu, S.G., Ghica, D.: On the role of Fe ions on magnetic properties of doped TiO2nanoparticles. Appl. Phys. Lett. 106, 142404 (2015)

    Article  ADS  Google Scholar 

  33. Yeganeh, M., Shahtahmasebi, N., Kompany, A., Karimipour, M., Razavi, F., Nasralla, N.H.S., Siller, L.: The magnetic characterization of Fe doped TiO 2 semiconducting oxide nanoparticles synthesized by sol–gel method. Physica B. 511, 89–98 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Dakhel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dakhel, A.A., Hamad, H. & Jaafar, A. Investigation to the Structural, Optical, and Magnetic Properties of Synthesized Ni-Doped Anatase Nanoparticles: Essential Role of Treatment in Hydrogen on Long-Range Ferromagnetic Order. J Supercond Nov Magn 32, 253–260 (2019). https://doi.org/10.1007/s10948-018-4945-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4945-8

Keywords

Navigation