Skip to main content
Log in

Magnetic, Microwave Absorbing Performance of Al8Mn5 Alloy with La Dopant

  • Original Research
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The Al8Mn5 − xLax (x = 0, 0.2, 0.6, 1.0) powders were triumphantly manufactured by vacuum melting and planetary mill equipment. The influences of La content on phase constitution, morphology, saturation magnetization, and electromagnetic parameters were investigated by related equipment. The consequences demonstrate that Al8Mn4La phase, average size of particulate increases and the saturation magnetization (Ms) decreases as La content increased. The minimum reflectivity of Al8Mn4.4La0.6 powder reaches about −43.5 dB in the range of 10.8 to 11.7 GHz, and the effective bandwidth (RL < − 10 dB) can obtain about 1.70 GHz with the best matching thickness of 1.8 mm. These manifest Al8Mn5-xLax (x = 0, 0.2, 0.6, 1.0) powders possess the capacity to be excellent microwave absorbing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu, F., Hou, Y., Gao, S.: Exchange-coupled nanocomposites: chemical systhesis, characterozation and applications. Chem. Soc. Rev. 43, 8098–8133 (2014)

    Article  Google Scholar 

  2. Liu, F., Zhu, J.H., Yang, W.L.: Building nanocomposite magnets by coating a hard magnetic core with a soft magnetic shell. Angew. Chem. Int. Ed. 53, 2176–2180 (2014)

    Article  Google Scholar 

  3. Yang, C., Wu, J.J., Hou, Y.L.: Fe3O4 nanostructures: synthesis, growth mechanism, properties and application. Chem. Commun. 47, 5130–5141 (2011)

    Article  Google Scholar 

  4. Cao, M.S., Wang, X.X., Cao, W.Q., Yuan, J.: Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. J. Mater. Chem. C. 3, 6589–6599 (2015)

    Article  Google Scholar 

  5. Liu, J., Cao, W.Q., Jin, H.B., Yuan, J., Zhang, D.Q., Cao, M.S.: Enhanced permittivity and multi-region microwave absorption of nanoneedle-like ZnO in the X-band at elevated temperature. J. Mater. Chem. C. 3, 4670–4677 (2015)

    Article  Google Scholar 

  6. Xu, J.S., Zhou, W.C., Luo, F.: Research progress on radar stealth technique and radar absorbing materials. Mater. Rev. 28, 46–49 (2014)

    Google Scholar 

  7. Duan, L., Wen, B.Y.: Research progress of ploymer-based microwave absorbing materials. Mater. Rev. 28, 58–62 (2014)

    Google Scholar 

  8. Zhang, B.Q., Yu, M.X., Zhang, W.: Research progress of anisotropic magnetic absorbing materials. Mater. Rev. 3, 42–46 (2013)

    Google Scholar 

  9. Chikazumi, S.: The magnetic body manual (middle volume). Beijing: Metallurgical Industry Press (1948)

  10. Yang, Y.C., He, W.W., Lin, Q.: Neutron diffraction study of hard magnetic alloy MnAlC. Acta Phys. Sin. 32, 1454–1459 (1983)

    Google Scholar 

  11. Tian, R. T.: The research of Mn-Al-C type magnetic alloys (MS. thesis). Hebei University of Technology (2010)

  12. Ahmed, M.A., Okasha, M., Kershi, R.M.: Influence of rare-earth ions on the structure and magnetic properties of barium W-type hexaferrite. J. Magn. Magn. Mater. 320, 1146–1150 (2008)

    Article  ADS  Google Scholar 

  13. Ren, X.H., Xu, G.L.: Electromagnetic and microwave absorbing properties of NiCoZn-ferrites doped with La3+. J. Magn. Magn. Mater. 354, 44–48 (2014)

    Article  ADS  Google Scholar 

  14. Liao, S.B., Yin, G.J.: The absorption and reflection of absorbing material on electromagnetic wave. Aerosp. Mater. Technol. 2, 16–20 (1992)

    Google Scholar 

  15. Luo, J. L., Pan, S. K., Qiao, Z. Q., Cheng, L. C., Wang, Z. Z., Lin, P. H.: Electromagnetic and microwave absorption properties of flaky Nd-Ho-Fe particles. J. Mater. Sci: Mater. Electron. 28, 16366–16373 (2017)

  16. Liao, S.B.: Ferromagnetic science (Next volume), pp. 3–88. Science Press, Beijing (1988)

    Google Scholar 

  17. Tang, L.Y., Chi, X., Wei, J.Q.: Electromagnetic parameters and microwave absorption of Fe-(50)Ni-(50)/methyl-methacrylate composites. J. Magn. Mater. Devices. 6, 10–12 (2013)

    Google Scholar 

  18. Zhang, Z. Q.: Microwave magnetic and microwave absorption mechanism of FeSiAl planar anisotropy powders composites, (MS. Thesis) GanSu: Lanzhou University (2012)

  19. Inui, T., Konishi, K., Oda, K.: Fabrications of broad-band RF-absorber composed of planner hexagonal ferrites. IEEE Trans. Magn. 35, 3148–3150 (1999)

    Article  ADS  Google Scholar 

  20. Wang, B.C., Wei, J.Q., Yang, Y., Wang, T., Li, F.S.: Investigation on peak frequency of the microwave absorption for carbonyl iron/epoxy resin composite. J. Magn. Magn. Mater. 323, 1101–1103 (2011)

    Article  ADS  Google Scholar 

  21. Kong, I., Ahmad, S.H., Abdullah, M.H., Hui, D., Yusoff, A.N., Puryanti, D.: Magnetic and microwave absorbing properties of magnetite-thermoplastic natural rubber nanocomposites. J. Magn. Magn. Mater. 322, 3401–3409 (2010)

    Article  ADS  Google Scholar 

Download references

Funding

This project is supported by the National Natural Science Foundation of China (51361007), 2017 director fund of Guangxi Key Laboratory of wireless wideband communication and signal processing (GXKL06170107), and Innovation Project of GUET Graduate Education (2018YJCX87).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunkang Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Pan, S., Yu, J. et al. Magnetic, Microwave Absorbing Performance of Al8Mn5 Alloy with La Dopant. J Supercond Nov Magn 32, 277–281 (2019). https://doi.org/10.1007/s10948-018-4944-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4944-9

Keywords

Navigation