Skip to main content
Log in

Investigation of the Structural, Magnetic, Magnetocaloric, Electrical Properties, and Spin-Polarized Tunneling Effect of the La0.5Ca0.3Te0.2MnO3 System

  • Review Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Structural, magnetic, magnetocaloric, electrical properties, and spin-polarized tunneling effect in La0.5Ca0.3Te0.2MnO3 polycrystalline were studied in details. The temperature dependence of the inverse of the magnetic susceptibility indicates the presence of ferromagnetic exchange interaction between the nearest neighbors at the Weiss temperature θp = 265.32 ± 0.109. Based on the magnetic field dependence of magnetization, M(H), and employing the thermodynamic Maxwell equation, the magnetic entropy change |ΔSM| of the studied sample was determined. The maximum entropy change value of the system was around 4.99 J kg−1 K−1 under a magnetic field of 5 T. Electrically, the upturned region of resistivity was observed at low temperature. The recovery of the resistivity was found to be strongly affected by the external magnetic field. The electrical data were analyzed considering various models. Interestingly, the exception of the spin-polarized tunneling (SPT) model is in good agreement with the experimental data among other models. In the current work, the SPT is the dominant mechanism leading to the rise of resistivity, while decreasing the temperature values. Magnetotransport analysis was successfully carried out using percolation model in the temperature range between around 50 K to nearly 300 K under different magnetic fields up to 8 T. The isothermal field dependence of magnetoresistance was recorded fairly well via a phenomenological model based on the spin-polarized tunneling model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Doshi, R.R., Solanki, P.S., Khachar, U., Kuberkar, D.G., Krishna, P.S.R., Banerjee, A., Chaddah, P.: J Phys. B. 406, 4031 (2011)

    Article  Google Scholar 

  2. Dhiman, I., Das, A., Mishra, P.K., Lalla, N.P., Kumar, A.: J. Magn. Magn. Mater. 323, 748 (2011)

    Article  ADS  Google Scholar 

  3. Zener, C.: J. Phys. Rev. 82(3), 403 (1951)

    Article  ADS  Google Scholar 

  4. Bourouina, M., Krichene, A., Chniba Boudjada, N., Khitouni, M., Boujelben, W.: J. Ceram. Int. 03, 138 (2017)

    Google Scholar 

  5. Mandal, P., Das, S.: J. Phys. Rev. B. 56(23), 15073 (1997)

    Article  ADS  Google Scholar 

  6. Smari, M., Walha, I., Dhahri, E., Hlil, E.K.: J. Alloys Compd. 579, 564 (2013)

    Article  Google Scholar 

  7. Smari, M., Walha, I., Dhahri, E., Hlil, E.K.: Chem. Phys. Lett. 607, 25 (2014)

    Article  ADS  Google Scholar 

  8. Smari, M., Hamouda, R., Walha, I., Dhahri, E., Mompean, F., Hernández, M.G.: J. Alloys Compd. 05, 026 (2015)

    Google Scholar 

  9. Smari, M., Hamdi, R., Dhahri, E., Hlil, E.K., Bessais, L.: J. Ceram. Int. 03, 182 (2016)

    Google Scholar 

  10. Smari, M., Felhi, H., Hamdi, R., Nouri, K., Dhahri, E., Bessais, L.: J. Chem. Phys. Lett. 684, 72 (2017)

    Article  ADS  Google Scholar 

  11. Felhi, H., Smari, M., Walha, I., Dhahri, E., Valente, M.A., Bessais, L.: J. Chem. Phys. Lett. 691, 262 (2018)

    Article  ADS  Google Scholar 

  12. Ehsani, M.H., Kameli, P., Razavi, F.S., Ghazi, M.E., Aslibeiki, B.: J. Alloys Compd. 579, 406 (2013)

    Article  Google Scholar 

  13. Munirathinam, B., Krishnaiah, M., Devarajan, U., EsakkiMuthu, S., Arumugam, S.: J. Phys. Chem. Solids. 73, 925 (2012)

    Article  ADS  Google Scholar 

  14. Collado, J.A., Frontera, C., Garcıa-Munoz, J.L., Aranda, M.A.G.: J. Solid State Chem. 178, 1949 (2005)

    Article  ADS  Google Scholar 

  15. Taguchi, H., Matsuda, D., Nagano, M., Tanihata, K., Miyamoto, Y.: J. Am. Ceram. Soc. 75, 201 (1992)

    Article  Google Scholar 

  16. Sanchez, R.D., Rivas, J., Vazquez-Vazquez, C., Lopez-Quintela, A., Causa, M.T., Tovar, M., Oseroff, S.: J. Appl. Phys. Lett. 68, 134 (1996)

    Article  ADS  Google Scholar 

  17. Browning, V.M., Stroud, R.M., Fuller-Mora, W.W., Byers, J.M., Osofsky, M.S., Knies, D.L., Grabowski, K.S., Koller, D., Kim, J., Chrisey, D.B., Horwitz, J.S.: J. Appl. Phys. 83, 7070 (1998)

    Article  ADS  Google Scholar 

  18. Ming, Y., Hong-Guo, Z., Dan-Min, L., Jiu-Xing, Z.: Chin. Phys. B. 24, 17505 (2015)

    Article  Google Scholar 

  19. Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R., Chen, L.H.: Science. 264, 413 (1994)

    Article  ADS  Google Scholar 

  20. Von Helmolt, R., Wecker, J., Holzapfel, B., Schultz, L., Samwer, K.: Phys. Rev. Lett. 71, 2331 (1993)

    Article  ADS  Google Scholar 

  21. Moreo, A., Yunoki, S., Dagotto, E.: Science. 283, 2034 (1999)

    Article  Google Scholar 

  22. Salamon, M.B., Jaime, M.: J. Rev. Mod. Phys. 73, 583 (2001)

    Article  ADS  Google Scholar 

  23. Fäth, M., Freisem, S., Menovsky, A.A., Tomioka, Y., Aarts, J., Mydosh, J.A.: Science. 285, 1540 (1999)

    Article  Google Scholar 

  24. de Andres, A., et al.: Phys. Rev. B. 60, 7328 (1999)

    Article  ADS  Google Scholar 

  25. Zhang, S., Yang, Z.: J. Appl. Phys. 79, 7398 (1996)

    Article  ADS  Google Scholar 

  26. Coey, J.M.D., Viret, M., Ranno, L., Ounadjela, K.: Phys. Rev. Lett. 75, 3910 (1995)

    Article  ADS  Google Scholar 

  27. Ju, H.L., Gopalakrishnan, J., Peng, J.L., Li, Q., Xiong, G.C., Venkatesan, T., Greene, R.L.: Phys. Rev. B. 51, 6143 (1995)

    Article  ADS  Google Scholar 

  28. Li, X.W., Gupta, A., Xiao, G., Gong, G.Q.: Appl. Phys. Lett. 71, 1124 (1997)

    Article  ADS  Google Scholar 

  29. Hwang, H.Y., Cheong, S.W., Ong, N.P., Batlogg, B.: Phys. Rev. Lett. 77, 2041 (1996)

    Article  ADS  Google Scholar 

  30. Pecharsky, V.K., Gschneidner, K.A.: J. Magn. Magn. Mater. 200, 44 (1999)

    Article  ADS  Google Scholar 

  31. Wang, Z.M., Ni, G., Xu, Q.Y., Sang, H., Du, Y.W.: J. Appl. Phys. 90(11), 5689–5691 (2001)

    Article  ADS  Google Scholar 

  32. Foldeaki, M., Chahine, R., Bose, T.K.: J. Appl. Phys. 77(7), 3528 (1995)

    Article  ADS  Google Scholar 

  33. Amaral, J.S., Reis, M.S., Amaral, V.S., Mendonca, T.M., Araujo, J.P., Sa, M.A., Tavares, P.B., Vieira, J.M.: J. Magn. Magn. Mater. 290, 686 (2005)

    Article  ADS  Google Scholar 

  34. Inoue, J., Shimizu, M.: J. Phys. Lett. A. 90, 85 (1982)

    Article  ADS  Google Scholar 

  35. Amaral, V.S., Amaral, J.S.: J. Magn. Magn. Mater. 272–276, 2104 (2004)

    Article  ADS  Google Scholar 

  36. Anwar, M.S., Kumar, S., Ahmed, F., Arshi, N., Kim, G.W., Koo, B.H.: J. Korean Phys. Soc. 60, 1587 (2012)

    Article  ADS  Google Scholar 

  37. Jaime, M., Lin, P., Salamon, M.B., Han, P.D.: Phys. Rev. B. 58, R5901 (1998)

    Article  ADS  Google Scholar 

  38. Zhao, G., Smolyaninova, V., Prellier, W., Keller, H.: Phys. Rev. Lett. 84, 6086 (2000)

    Article  ADS  Google Scholar 

  39. Jeffrey Snyder, G., Hikes, R., DiCarolis, S., Beasley, M.R., Geballe, T.H.: J. Phys. Rev. B. 53, 14434 (1996)

    Article  ADS  Google Scholar 

  40. Kubo, K., Ohata, N.A.: J. Phys. Soc. Jpn. 33, 21 (1972)

    Article  ADS  Google Scholar 

  41. Goodenough, J.B., Zhou, J.S.: Nature. 386, 229 (1997)

    Article  ADS  Google Scholar 

  42. Das, S., Dey, T.K.: Solid State Commun. 134, 837 (2005)

    Article  ADS  Google Scholar 

  43. Das, S., Dey, T.K.: J. Magn. Magn. Mater. 294, 338 (2005)

    Article  ADS  Google Scholar 

  44. Rozenberg, E., Auslender, M., Felner, I., Gorodetsky, G.: J. Appl. Phys. 88, 2578 (2000)

    Article  ADS  Google Scholar 

  45. Mukhopadhyay, S., Das, I.: Euro. J. Phys. Lett. 79, 67002 (2007)

    ADS  Google Scholar 

  46. Garcia-Hermandez, M., Guinea, F., de Andres, A., Martinez, J.L., Prieto, C., Vazquez, L.: J. Phys. Rev. B. 61, 9549 (2000)

    Article  ADS  Google Scholar 

  47. Helman, J.S., Abeles, B.: Phys. Rev. Lett. 37, 1429 (1976)

    Article  ADS  Google Scholar 

  48. Auslender, M.I., Rozenberg, E., Karlin, A.E., Chaudhuri, B.K., Gorodetsky, G.: J. Alloys Compd. 326, 81 (2001)

    Article  Google Scholar 

  49. Ciftja, O., Luban, M., Auslender, M., Luscombe, J.H.: Equation of state and spin-correlation functions of ultrasmall classical Heisenberg magnets. Phys. Rev. B. 60, 10122–10133 (1999)

    Article  ADS  Google Scholar 

  50. Li, G., Zhou, H.D., Feng, S.L., Fan, X.J., Li, X.G.: J. Appl. Phys. 92, 1406 (2002)

    Article  ADS  Google Scholar 

  51. Raychaudhuri, P., Nath, T.K., Nigam, A.K., Pinto, R.: J. Appl. Phys. 84, 2048 (1998)

    Article  ADS  Google Scholar 

  52. Das, K., Satpati, B., Das, I.: RSC Adv. 5, 27338 (2015)

    Article  Google Scholar 

  53. Raychaudhuri, P., Sheshadri, K., Taneja, P., Bandyopadhyay, S., Ayyub, P., Nigam, A.K., Pinto, R.: J. Phys. Rev. B. 59, 13919 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Tunisian Ministry of Higher Education and Scientific Research and the Moroccan, Algerian and French Ministries of Higher Education and Research of PHC Morocco 15MAG07 collaboration, within the framework of Franco-Moroccan collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Felhi.

Additional information

Highlights

In the present study, the polycrystalline La0.5Ca0.3Te0.2MnO3 was prepared by sol-gel method. The maximum of the magnetic entropy change (\( -\triangle {S}_M^{\mathrm{max}} \)) was calculated using the isothermal magnetization curves M (H) under magnetic field change of 5 T and is found to be 4.99 J kg−1 K−1 for our sample. The electrical data were analyzed considering various models. It is noteworthy that the exception of the spin-polarized tunneling (SPT) model is in good agreement with the experimental data among other models. In the current work, the SPT is the dominant mechanism leading to the rise of resistivity while decreasing the temperature values. The isothermal field dependence of magnetoresistance was recorded honestly well via a phenomenological model based on the spin-polarized tunneling model.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felhi, H., Smari, M., Hamdi, R. et al. Investigation of the Structural, Magnetic, Magnetocaloric, Electrical Properties, and Spin-Polarized Tunneling Effect of the La0.5Ca0.3Te0.2MnO3 System. J Supercond Nov Magn 32, 463–473 (2019). https://doi.org/10.1007/s10948-018-4906-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4906-2

Keywords

Navigation