Skip to main content
Log in

Laser Source Influence on the Preferential Growth and the Inversion Degree in Pulsed Laser CoFe2O4 Films

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

A comparative study between cobalt ferrite films deposited by pulsed laser deposition as a function of the laser sources, 355 nm (Nd:YAG) and 248 nm (KrF excimer), on amorphous quartz (AQ) and < 100 > -oriented silicon wafer (SW) at different temperatures (650–800 C) is presented. Also, a quantitative estimation of the preferential crystalline growth orientation as laser source function was made by means of Lotgering factor and Harris texture coefficient, which were obtained from XRD patterns. The inversion degree in spinel-type structure for cobalt ferrite films was calculated through a deconvolution in Raman spectra, where the band A1g vibrating modes in tetrahedral sites were associated with Fe and Co sites (687 and 611 cm−1, respectively). Additionally, saturation magnetization was also calculated from the inversion degree obtained from deconvolution of the Raman spectra in CoFe2O4 films, being compared with experimental results, which is in a good agreement with cobalt ferrite bulk, and we also correlated the preferential growth and the particle size with increment of the coercive field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cullity, B.D., Graham, C.D.: Introduction to magnetic materials. Cullity. https://doi.org/10.1016/S1369-7021(09)70091-4 (2009)

  2. Khaja Mohaideen, K., Joy, P.A.: High magnetostriction and coupling coefficient for sintered cobalt ferrite derived from superparamagnetic nanoparticles. Appl. Phys. Lett. 101. https://doi.org/10.1063/1.4745922 (2012)

    Article  ADS  Google Scholar 

  3. Caltun, O.F., Rao, G.S.N., Rao, K.H., Rao, B.P., Kim, C., Kim, C. -O., Dumitru, I., Lupu, N., Chiriac, H.: High magnetostrictive cobalt ferrite for sensor applications. Sens. Lett. 5, 45–47 (2007). https://doi.org/10.1166/sl.2007.027

    Article  Google Scholar 

  4. Suzuki, Y., Hu, G., van Dover, R.B.B., Cava, R.J.J.: Magnetic anisotropy of epitaxial cobalt ferrite thin films. J. Magn. Magn. Mater. 191, 1–8 (1999). https://doi.org/10.1016/S0304-8853(98)00364-3

    Article  ADS  Google Scholar 

  5. Ramos, A.V., Guittet, M.J., Moussy, J.B., Mattana, R., Deranlot, C., Petroff, F., Gatel, C.: Room temperature spin filtering in epitaxial cobalt-ferrite tunnel barriers. Appl. Phys. Lett. 91. https://doi.org/10.1063/1.2787880 (2007)

    Article  ADS  Google Scholar 

  6. Nlebedim, I.C., Jiles, D.C.: Suitability of cation substituted cobalt ferrite materials for magnetoelastic sensor applications. Smart Mater Struct. 24. https://doi.org/10.1088/0964-1726/24/2/025006 (2015)

    Article  Google Scholar 

  7. Giri, A.K., Kirkpatrick, E.M., Moongkhamklang, P., Majetich, S.A., Harris, V.G.: Photomagnetism and structure in cobalt ferrite nanoparticles. Appl. Phys. Lett. 80, 2341–2343 (2002). https://doi.org/10.1063/1.1464661

    Article  ADS  Google Scholar 

  8. Stichauer, L., Gavoille, G., Simsa, Z.: Optical and magneto-optical properties of nanocrystalline cobalt ferrite films. J. Appl. Phys. 79, 3645–3650 (1996). https://doi.org/10.1063/1.361192

    Article  ADS  Google Scholar 

  9. Scott, B.L., Radu, C., Smith, D.A., Stokes, K.L.: Magneto-optical study of cobalt ferrite nanoparticles. In: Tms 2008 annual meeting supplemental proceedings, vol 3 Gen. Pap. Sel., pp 399–404 (2008)

  10. Raghunathan, A., Nlebedim, I.C., Jiles, D.C., Snyder, J.E.: Growth of crystalline cobalt ferrite thin films at lower temperatures using pulsed-laser deposition technique. J. Appl. Phys. 107. https://doi.org/10.1063/1.3357315(2010)

  11. Zheng, H.: Multiferroic BaTiO3-CoFe2O4 nanostructures. Science (80). 303, 661–663 (2004). https://doi.org/10.1126/science.1094207

    Article  ADS  Google Scholar 

  12. Ferreira, T.A.S., Waerenborgh, J.C., Mendonça, M.H.R.M., Nunes, M.R., Costa, F.M.: Structural and morphological characterization of FeCo2O4 and CoFe2O4 spinels prepared by a coprecipitation method. Solid State Sci. 5, 383–392 (2003). https://doi.org/10.1016/S1293-2558(03)00011-6

    Article  ADS  Google Scholar 

  13. Na, J.G., Lee, T.D., Park, S.J.: Effects of cation distribution on magnetic properties in cobalt ferrite. J. Mater. Sci. Lett. 12, 961–962 (1993). https://doi.org/10.1007/BF00455632

    Article  Google Scholar 

  14. Haneda, K., Morrish, A.H.: Noncollinear magnetic structure of CoFe2O4 small particles. J. Appl. Phys. 63, 4258–4260 (1988). https://doi.org/10.1063/1.340197

    Article  ADS  Google Scholar 

  15. Sawatzky, G.A., Van Der Woude, F., Morrish, A.H.: Mössbauer study of several ferrimagnetic spinels. Phys. Rev. 187, 747–757 (1969). https://doi.org/10.1103/PhysRev.187.747

    Article  ADS  Google Scholar 

  16. Sawatzky, G.A., Van Der Woude, F., Morrish, A.H.: Cation distributions in octahedral and tetrahedral sites of the ferrimagnetic spinel CoFe2O4. J. Appl. Phys. 39, 1204–1205 (1968). https://doi.org/10.1063/1.1656224

    Article  ADS  Google Scholar 

  17. Hassan, R.S., Viart, N., Ulhaq-Bouillet, C., Loison, J.L., Versini, G., Vola, J.P., Crégut, O., Pourroy, G., Muller, D., Chateigner, D.: Structural properties of cobalt ferrite thin films deposited by pulsed laser deposition: effect of the reactive atmosphere. Thin Solid Films 515, 2943–2948 (2007). https://doi.org/10.1016/j.tsf.2006.08.033

    Article  ADS  Google Scholar 

  18. Madhav Kumar, V., Srinivas, A., Talapatra, A., Asthana, S., Mohanty, J., Kamat, S.: Effect of deposition temperature on structural microstructural and magnetic properties of CoFe2O4 thin films deposited by pulsed laser deposition (2016)

  19. Shirsath, S.E., Liu, X., Yasukawa, Y., Li, S., Morisako, A.: Switching of magnetic easy-axis using crystal orientation for large perpendicular coercivity in CoFe2O4 thin film. Sci. Rep. 6. https://doi.org/10.1038/srep30074(2016)

  20. Ning, M., Li, J., Ong, C.K., Wang, S.J.: High perpendicular coercive field of (100)-oriented CoFe2O4 thin films on Si (100) with MgO buffer layer. J. Appl. Phys. 103, 13911 (2008). https://doi.org/10.1063/1.2828040

    Article  ADS  Google Scholar 

  21. Lotgering, F.K.: Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-I. J. Inorg. Nucl. Chem. 9, 113–123 (1959). https://doi.org/10.1016/0022-1902(59)80070-1

    Article  Google Scholar 

  22. Furushima, R., Tanaka, S., Kato, Z., Uematsu, K.: Orientation distribution–Lotgering factor relationship in a polycrystalline material—as an example of bismuth titanate prepared by a magnetic field. J. Ceram. Soc. Jpn. 118, 921–926 (2010). https://doi.org/10.2109/jcersj2.118.921

    Article  Google Scholar 

  23. Pham-Thi, M., Hemery, H., Dammak, H.: X ray investigation of high oriented (1 - x)PbMg1/3Nb2/3O3–(x)PbTiO3 ceramics. J. Eur. Ceram. Soc. 25, 2433–2435 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.077

    Article  Google Scholar 

  24. Harris, G.B.: X. Quantitative measurement of preferred orientation in rolled uranium bars, London, Edinburgh, Dublin Philos. Mag. J. Sci. 43, 113–123 (1952). https://doi.org/10.1080/14786440108520972

    Article  Google Scholar 

  25. Thompson, C.V., Carel, R.: Grain growth and texture evolution in thin films. Mater. Sci. Forum 204–206, 83–98 (1996)

    Article  Google Scholar 

  26. Sagar, E.S., Liu, X., Yusakawa, Y., Li, S., Morisako, A.: Sci. Rep. 1–9.https://doi.org/10.1038/srep30074 (2016)

  27. Thompson, C.V., Carel, R.: J. Mech. Phys. Solids 44(5), 657–673 (1996)

    Article  ADS  Google Scholar 

  28. Terzzoli, M.C., Duhalde, S., Jacobo, S., Steren, L., Moina, C.: High perpendicular coercive field of CoFe2O4 thin films deposited by PLD. J. Alloys Compd. 209–212. https://doi.org/10.1016/j.jallcom.2003.09.086 (2004)

    Article  Google Scholar 

  29. Mishra, R.K., Thomas, G.: Surface energy of spinel. J. Appl. Phys. 48, 4576–4580 (1977). https://doi.org/10.1063/1.323486

    Article  ADS  Google Scholar 

  30. Schnittger, S., Jooss, C., Sievers, S.: Magnetic and structural properties of cobalt ferrite thin films and structures. J. Phys. Conf. Ser. https://doi.org/10.1088/1742-6596/200/7/072086 (2010)

    Google Scholar 

  31. Delmdahl, R., Pätzel, R.: Pulsed laser deposition with excimer lasers. Phys. Stat. Sol (c) 5(10), 3276–3279 (2008). https://doi.org/10.1002/pssc.200779515

    Article  Google Scholar 

  32. Milutinović, A., Lazarević, Z., Jovalekić, .̌ C. , Kuryliszyn-Kudelska, I., Romčević, M., Kostić, S., Romčević, N.: The cation inversion and magnetization in nanopowder zinc ferrite obtained by soft mechanochemical processing. Mater. Res. Bull. 48, 4759–4768 (2013). https://doi.org/10.1016/j.materresbull.2013.08.020

    Article  Google Scholar 

  33. Shebanova, O.N., Lazor, P.: Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation. J. Raman Spectrosc. 34, 845–852 (2003). https://doi.org/10.1002/jrs.1056

    Article  ADS  Google Scholar 

  34. Ahlawat, A., Sathe, V.G.: Raman study of NiFe2O4 nanoparticles, bulk and films: effect of laser power. J. Raman Spectrosc. 42, 1087–1094 (2011). https://doi.org/10.1002/jrs.2791

    Article  ADS  Google Scholar 

  35. Chandramohan, P., Srinivasan, M.P., Velmurugan, S., Narasimhan, S.V., distribution, Cation: particle size effect on Raman spectrum of CoFe2O4. J. Solid State Chem. 184, 89–96 (2011). https://doi.org/10.1016/j.jssc.2010.10.019

    Article  ADS  Google Scholar 

  36. Nakagomi, F., da Silva, S.W., Garg, V.K., Oliveira, A.C., Morais, P.C., Franco, A.: Influence of the Mg-content on the cation distribution in cubic MgxFe3-xO4 nanoparticles. J. Solid State Chem. 182, 2423–2429 (2009). https://doi.org/10.1016/j.jssc.2009.06.036

    Article  ADS  Google Scholar 

  37. Skomski, R.: Nanomagnetics. J. Phys. Condens. Matter 15, R841 (2003). https://doi.org/10.1088/0953-8984/15/20/202

    Article  ADS  Google Scholar 

  38. Rana, K., Thakur, P., Sharma, P., Tomar, M., Gupta, V., Thakur, A.: Improved structural and magnetic properties of cobalt nanoferrites: influence of sintering temperature. Ceram. Int. 41. https://doi.org/10.1016/j.ceramint.2014.11.143 (2015)

    Article  Google Scholar 

  39. Gorter, E.W.: Magnetization in ferrites: saturation magnetization of ferrites with spinel structure. Nature 165, 798–800 (1950). https://doi.org/10.1038/165798a0

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the LUCE for the Raman measurements, and Carlos Flores Morales (IIM-UNAM) and Adriana Tejeda Cruz (IIM-UNAM) for the AFM and GIXRD measurements, respectively. We like to thank C. Sanchez-Aké for providing the PLD system and R. Sato for the discussion. Finally, E. López-Moreno thanks the CONACyT, Mexico, for the scholar grant no. 255468.

Funding

This work was financially supported by the DGAPA-UNAM, through the PAPIIT grant no. IG100517.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Montiel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Moreno, E., Montiel, H., Conde, A. et al. Laser Source Influence on the Preferential Growth and the Inversion Degree in Pulsed Laser CoFe2O4 Films. J Supercond Nov Magn 32, 599–607 (2019). https://doi.org/10.1007/s10948-018-4740-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4740-6

Keywords

Navigation