Skip to main content
Log in

Theoretical Model Study of Interplay of Coulomb Interaction and Electron-Phonon Interaction in the Thermal Properties of Monolayer Graphene

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We propose here a tight-binding (TB) model Hamiltonian for monolayer graphene-on-substrate describing the nearest-neighbor-hopping, on-site Coulomb interaction on the sub-lattices and the electron-phonon interaction under the high-frequency limit of phonon vibration. Applying Lang-Firsov canonical transformation, the electron and phonon systems are decoupled in the atomic Hamiltonian, such that the effective Coulomb interaction and effective nearest-neighbor-hopping integral respectively appear as \(\tilde {U}=U-2t_{1}\lambda \) and \(\tilde {t}_{1}=t_{1}e^{\frac {-t_{1}\lambda } {\omega _{0}}}\), where U, t1, λ and ω0 are respectively Coulomb energy, nearest-neighbor-hopping integral, electron-phonon (e-ph) coupling and phonon frequency. The effective Coulomb interaction in the Hamiltonian is considered within mean-field approximation. The Hamiltonian is solved by Zubarev’s Green’s function technique. The temperature-dependent electronic entropy and specific heat are calculated from the free energy of graphene system and are computed numerically. The temperature-dependent electronic specific heat exhibits a charge gap peak at room temperature arising due to the effect of Coulomb interaction and electron-phonon interaction. The evolution of these peaks in specific heat is investigated by varying the model parameters of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008). https://doi.org/10.1016/j.ssc.2008.02.024

    Article  ADS  Google Scholar 

  2. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Sci. (80-.) 321, 385–388 (2008). https://doi.org/10.1126/science.1157996

    Article  ADS  Google Scholar 

  3. Zhang, Y., Tan, Y.W.Y.-W.W., Stormer, H.L.H.L.H.L., Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005). https://doi.org/10.1038/nature04235

    Article  ADS  Google Scholar 

  4. Schabel, M.C., Martins, J.L.: Energetics of interplanar binding in graphite. Phys. Rev. B. 46, 7185–7188 (1992). https://doi.org/10.1103/PhysRevB.46.7185

    Article  ADS  Google Scholar 

  5. Bullett, D.W.: Angular forces and valence force field in C and Si. J. Phys. C Solid State Phys. 8, 3108–3114 (1975). https://doi.org/10.1088/0022-3719/8/19/010

    Article  ADS  Google Scholar 

  6. Verma, R., Member, S., Bhattacharya, S.: Thermoelectric performance of a single-layer graphene sheet for energy harvesting. ieeexplore.ieee.org. 60, 2064–2070 (2013)

    Google Scholar 

  7. Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E.P., Nika, D.L., Balandin, A.A., Bao, W., Miao, F., Lau, C.N.: Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008). https://doi.org/10.1063/1.2907977

    Article  ADS  Google Scholar 

  8. Li, J., Wierzbowski, J., Ceylan, Ö., Klein, J., Nisic, F., Le Anh, T., Meggendorfer, F., Palma, C.A., Dragonetti, C., Barth, J.V., Finley, J.J., Margapoti, E.: Tuning the optical emission of MoS2 nanosheets using proximal photoswitchable azobenzene molecules. Appl. Phys. Lett. 105, 241116 (2014). https://doi.org/10.1063/1.4904824

    Article  ADS  Google Scholar 

  9. Balasubramanian, G., Puri, I.K., Böhm, M. C., Leroy, F.: Thermal conductivity reduction through isotope substitution in nanomaterials: predictions from an analytical classical model and nonequilibrium molecular dynamics simulations. Nanoscale 3, 3714 (2011). https://doi.org/10.1039/c1nr10421g

    Article  ADS  Google Scholar 

  10. Azadeh, M.S.S., Kokabi, A., Hosseini, M., Fardmanesh, M.: Tunable bandgap opening in the proposed structure of silicon doped graphene. IET. 4 (2011). https://doi.org/10.1049/mnl.2011.0195

  11. Mortazavi, B., Rajabpour, A., Ahzi, S., Rmond, Y., Mehdi Vaez Allaei, S.: Nitrogen doping and curvature effects on thermal conductivity of graphene: a non-equilibrium molecular dynamics study. Solid State Commun. 152, 261–264 (2012). https://doi.org/10.1016/j.ssc.2011.11.035

    Article  ADS  Google Scholar 

  12. Tohei, T., Kuwabara, A., Oba, F., Tanaka, I.: Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations. Phys. Rev. B - Condens. Matter Mater. Phys. 73, 64304 (2006). https://doi.org/10.1103/PhysRevB.73.064304

    Article  ADS  Google Scholar 

  13. Nicklow, R., Wakabayashi, N., Smith, H.G.: Lattice dynamics of pyrolytic graphite. Phys. Rev. B. 5, 4951–4962 (1972). https://doi.org/10.1103/PhysRevB.5.4951

    Article  ADS  Google Scholar 

  14. Ramezanali, M.R., Vazifeh, M.M., Asgari, R., Polini, M., MacDonald, A.H.: Finite-temperature screening and the specific heat of doped graphene sheets. J. Phys. A Math. Theor. 42, 214015 (2008). https://doi.org/10.1088/1751-8113/42/21/214015

    Article  ADS  MATH  Google Scholar 

  15. Burmistrov, I.S., Gornyi, I.V., Kachorovskii, V.Y., Katsnelson, M.I., Mirlin, A.D.: Quantum elasticity of graphene: thermal expansion coefficient and specific heat. Phys. Rev. B. 94, 195430 (2016). https://doi.org/10.1103/PhysRevB.94.195430

    Article  ADS  Google Scholar 

  16. Alisultanov, Z.Z., Reis, M.S.: Magneto-oscillations on specific heat of graphene monolayer. Phys. Lett. A. 380, 470–474 (2016). https://doi.org/10.1016/j.physleta.2015.10.046

    Article  ADS  MATH  Google Scholar 

  17. Falkovsky, L.A.A.: Thermodynamics of electron-hole liquids in graphene. JETP Lett. 98, 161–164 (2013). https://doi.org/10.1134/S0021364013160042

    Article  ADS  Google Scholar 

  18. Sahu, S., Parashar, S.K.S., Rout, G.C.: Model study of band gap opening in graphene by electron–electron and electron–phonon interaction in high frequency range. Adv. Sci. Lett. 22, 331–335 (2016). https://doi.org/10.1166/asl.2016.6894

    Article  Google Scholar 

  19. Sahu, S., Rout, G.C.: A theoretical model study on interplay between Coulomb potential and lattice energy in graphene-on-substrate. Int. J. Comput. Mater. Sci. Eng. 6, 1750011 (2017). https://doi.org/10.1142/S2047684117500117

    Google Scholar 

  20. Hubbard, J.: Electron correlations in narrow energy bands. Proc. R. Soc. A Math. Phys. Eng. Sci. 276, 238–257 (1963). https://doi.org/10.1098/rspa.1963.0204

    ADS  Google Scholar 

  21. Lang, I.G., Firsov, Y.: A: Kinetic theory of semiconductors with low mobility. Sov. J. Exp. Theor. Phys. 16, 1301–1312 (1963)

    ADS  MATH  Google Scholar 

  22. Zubarev, D.N.: Double-time green functions in statistical physics. Sov. Phys. Uspekhi. 3, 320–345 (1960). https://doi.org/10.1070/PU1960v003n03ABEH003275

    Article  ADS  MathSciNet  Google Scholar 

  23. Los, J.H., Zakharchenko, K.V., Katsnelson, M.I., Fasolino, A.: Melting temperature of graphene. Phys. Rev. B. 91, 45415 (2015). https://doi.org/10.1103/PhysRevB.91.045415

    Article  ADS  Google Scholar 

  24. Dresselhaus, M.S., Jorio, A., Souza Filho, A.G., Saito, R.: Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368, 5355–5377 (2010). https://doi.org/10.1098/rsta.2010.0213

    Article  ADS  Google Scholar 

  25. Mazzola, F., Frederiksen, T., Balasubramanian, T., Hofmann, P., Hellsing, B., Wells, J.W.: Strong electron-phonon coupling in the σ band of graphene. Phys. Rev. B. 95, 75430 (2017). https://doi.org/10.1103/PhysRevB.95.075430

    Article  ADS  Google Scholar 

  26. Mazzola, F., Wells, J.W., Yakimova, R., Ulstrup, S., Miwa, J.A., Balog, R., Bianchi, M., Leandersson, M., Adell, J., Hofmann, P., Balasubramanian, T.: Kinks in the σ band of graphene induced by electron-phonon coupling. Phys. Rev. Lett. 111, 216806 (2013). https://doi.org/10.1103/PhysRevLett.111.216806

    Article  ADS  Google Scholar 

  27. Johannsen, J.C., Ulstrup, S., Bianchi, M., Hatch, R., Guan, D., Mazzola, F., Hornekær, L., Fromm, F., Raidel, C., Seyller, T., Hofmann, P.: Electron-phonon coupling in quasi-free-standing graphene. J. Phys. Condens. Matter. 25, 94001 (2013). https://doi.org/10.1088/0953-8984/25/9/094001

    Article  Google Scholar 

  28. Forti, S., Emtsev, K.V., Coletti, C., Zakharov, A.A., Riedl, C., Starke, U.: Large-area homogeneous quasifree standing epitaxial graphene on SiC(0001): electronic and structural characterization. Phys. Rev. B - Condens. Matter Mater. Phys. 84, 125449 (2011). https://doi.org/10.1103/PhysRevB.84.125449

    Article  ADS  Google Scholar 

  29. Ulstrup, S., Bianchi, M., Hatch, R., Guan, D., Baraldi, A., Alfè, D., Hornekær, L., Hofmann, P.: High-temperature behavior of supported graphene: electron-phonon coupling and substrate-induced doping. Phys. Rev. B - Condens. Matter Mater. Phys. 86, 161402 (2012). https://doi.org/10.1103/PhysRevB.86.161402

    Article  ADS  Google Scholar 

  30. Nihira, T., Iwata, T.: Temperature dependence of lattice vibrations and analysis of the specific heat of graphite. Phys. Rev. B. 68, 134305 (2003). https://doi.org/10.1103/PhysRevB.68.134305

    Article  ADS  Google Scholar 

  31. Fried, L., Howard, W.: Explicit Gibbs free energy equation of state applied to the carbon phase diagram. Phys. Rev. B. 61, 8734–8743 (2000). https://doi.org/10.1103/PhysRevB.61.8734

    Article  ADS  Google Scholar 

  32. Peres, N.M.R., Araújo, M. A. N., Bozi, D.: Phase diagram and magnetic collective excitations of the Hubbard model for graphene sheets and layers. Phys. Rev. B - Condens. Matter Mater. Phys. 70, 1–12 (2004). https://doi.org/10.1103/PhysRevB.70.195122

    Article  Google Scholar 

  33. Giovannetti, G., Khomyakov, P.A., Brocks, G., Kelly, P.J., Van Den Brink, J.: Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations. Phys. Rev. B - Condens. Matter Mater. Phys. 76, 73103 (2007). https://doi.org/10.1103/PhysRevB.76.073103

    Article  ADS  Google Scholar 

  34. Enderlein, C., Kim, Y.S., Bostwick, A., Rotenberg, E., Horn, K.: The formation of an energy gap in graphene on ruthenium by controlling the interface. J. Phys. 12, 33014 (2010). https://doi.org/10.1088/1367-2630/12/3/033014

    Google Scholar 

  35. Zhou, S.Y., Gweon, G.H., Fedorov, A.V., First, P.N., De Heer, W.A., Lee, D.H., Guinea, F., Castro Neto, A.H., Lanzara, A.: Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 6, 770–775 (2007). https://doi.org/10.1038/nmat2003

    Article  ADS  Google Scholar 

  36. Sahu, S., Rout, G.C.: Model study of the effect of Coulomb interaction on band gap of graphene-on-substrates. Phys. B Condens. Matter. 461, 49–56 (2015). https://doi.org/10.1016/j.physb.2014.12.014

    Article  ADS  Google Scholar 

  37. Sahu, S., Rout, G.C.: Tight-binding model study of substrate induced pseudo-spin polarization and magnetism in mono-layer graphene. J. Magn. Magn. Mater. 1–10 (2015). https://doi.org/10.1016/j.jmmm.2016.01.062

Download references

Funding

This work is supported by the Centre of Excellence for Novel Energy Materials (CENEMA) under the Ministry of Human Resources Development of India and School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Rout.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, S., Rout, G.C. Theoretical Model Study of Interplay of Coulomb Interaction and Electron-Phonon Interaction in the Thermal Properties of Monolayer Graphene. J Supercond Nov Magn 32, 219–228 (2019). https://doi.org/10.1007/s10948-018-4722-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4722-8

Keywords

Navigation