Skip to main content
Log in

Superconductor Nanometallic Photonic Crystals as a Novel Smart Window for Low-Temperature Applications

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The control of electromagnetic wave propagation has played an essential role in recent technology. In this paper, we present a novel type of smart window using one-dimensional superconductor nanometallic photonic crystals. The present idea depends on the control of the transmittance values based on the angle of incidence of the electromagnetic waves. We have investigated the transmittance of the proposed novel smart window based on a two-fluid model and a characteristic matrix method. We also obtained the effect of the operating temperature, number of periods, and thicknesses of the constituent materials. Finally, the proposed design promises for useful applications such as space exploration, satellites, and low-temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Joannopoulos, J.D.: Photonic crystals: Molding the flow of light. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  2. Inoue, K., Ohtaka, K.: Photonic crystals: Physics, fabrication, and applications. Springer, Berlin (2004)

    Book  Google Scholar 

  3. Sukhoivanov, I.A., Guryev, I.V.: Photonic crystals physics and practical modeling. Springer-Verlag, Berlin (2010)

    Google Scholar 

  4. Gong, Q., Hu, X.: Photonic crystals: principles and applications. Pan Stanford, Singapore (2014)

    Google Scholar 

  5. Meschede, D.: Optics, Light and lasers: The practical approach to modern aspects of photonics and laser physics. Wiley, New York (2017)

    Book  Google Scholar 

  6. Turduev, M.: Phys. arXiv:160205886 (2016)

  7. Aly, A.H., Elsayed, H.A.: Phys. B Condens. Matter 407, 120 (2012)

    Article  ADS  Google Scholar 

  8. Sugimoto, Y., Lan, S., Nishikawa, S., Ikeda, N., Ishikawa, H., Asakawa, K.: Appl. Phys. Lett. 81, 1946 (2002)

    Article  ADS  Google Scholar 

  9. Yablonovitch, E.: Phys. Rev. Lett. 58, 2059 (1987)

    Article  ADS  Google Scholar 

  10. John, S.: Phys. Rev. Lett. 58, 2486 (1987)

    Article  ADS  Google Scholar 

  11. Aly, A.H., Sabra, W.: Physica C: Supercond. 495, 129 (2013)

    Article  ADS  Google Scholar 

  12. Aly, A.H., Elsayed, H.A., El-Naggar, S.A.: J. Mod. Opt. 64, 74 (2017)

    Article  ADS  Google Scholar 

  13. El-Naggar, S.A., Elsayed, H.A., Aly, A.H.: J. Supercond. Nov. Magn. 27, 1615 (2014)

    Article  Google Scholar 

  14. Akahane, Y., Asano, T., Song, B.-S., Noda, S.: Nature 425, 944 (2003)

    Article  ADS  Google Scholar 

  15. Elsayed, H.A., El-Naggar, S.A., Aly, A.H.: Mater. Chem. Phys. 160, 221 (2015)

    Article  Google Scholar 

  16. Maldovan, M., Thomas, E.L.: Nat. Mater. 3, 593 (2004)

    Article  ADS  Google Scholar 

  17. Noda, S., Tomoda, K., Yamamoto, N., Chutinan, A.: Science 289, 604 (2000)

    Article  ADS  Google Scholar 

  18. Bayindir, M., Temelkuran, B., Ozbay, E.: Phys. Rev. Lett. 84, 2140 (2000)

    Article  ADS  Google Scholar 

  19. Wu, C.-J., Chung, Y.-H., Syu, B.-J., Yang, T.-J.: Prog. Electromagn. Res. 102, 81 (2010)

    Article  Google Scholar 

  20. Aly, A.H.: J. Supercond. Nov. Magn. 21, 421 (2008)

    Article  Google Scholar 

  21. Sánchez, A.S., Halevi, P.: J. Appl. Phys. 94, 797 (2003)

    Article  ADS  Google Scholar 

  22. King, T.-C., Yang, Y.-P., Liou, Y.-S., Wu, C.-J.: Solid State Commun. 152, 2189 (2012)

    Article  ADS  Google Scholar 

  23. Srivastava, S.K.: J. Supercond. Nov. Magn. 27, 101 (2014)

    Article  Google Scholar 

  24. Aly, A.H., Ryu, S.-W., Hsu, H.-T., Wu, C.-J.: Mater. Chem. Phys. 113, 382 (2009)

    Article  Google Scholar 

  25. Liu, B., Johnson, S.G., Joannopoulos, J.D., Lu, L.: J. Opt. 20(4), 044005 (2018)

    Article  ADS  Google Scholar 

  26. Qi, L., Yang, Z., Lan, F., Gao, X., Shi, Z.: Phys. Plasmas 17, 042501 (2010)

    Article  ADS  Google Scholar 

  27. Mehdian, H., Mohammad Zahery, Z., Hasanbeigi, A.: Phys. Plasmas 21, 012101 (2014)

    Article  ADS  Google Scholar 

  28. Chang, T.-W., Chien, J.-R.C., Wu, C.-J.: Appl. Opt. 55, 943 (2016)

    Article  ADS  Google Scholar 

  29. Wu, C.-J., Liao, J.-J., Chang, T.-W.: J. Electromagn. Waves Appl. 24, 531 (2010)

    Google Scholar 

  30. Kleiner, R., Buckel, W.: Superconductivity: An introduction, 3rd edn. Wiley-VCH, Weinheim (2016)

  31. Buckel, W., Kleiner, R.: Superconductivity: Fundamentals and applications. Wiley-VCH, Weinheim (2004)

    Book  Google Scholar 

  32. Ford, P.J., Saunders, G.: The Rise of the superconductors. CRC Press, Boca Raton (2005)

    Google Scholar 

  33. Lee, H.-M., Wu, J.-C.: J. Appl. Phys. 107, 09E149 (2010)

    Article  Google Scholar 

  34. Aly, A.H., et al.: Accepted for publication in J. Supercond. Nov. Magn. https://doi.org/10.1007/s10948-018-4628-5 (2018)

  35. Aly, A.H., Mehaney, A., El-Naggar, S.A.: J. Supercond. Nov. Magn. 1, 11 (2017)

    Google Scholar 

  36. Thapa, K.B., Srivastava, S., Tiwari, S.: J. Supercond. Nov. Magn. 23, 517 (2010)

    Article  Google Scholar 

  37. Rifat, A.A., Ahmed, R., Yetisen, A.K., Butt, H., Sabouri, A., Mahdiraji, G.A., Yun, S.H., Adikan, F.R.M.: Sens. Actuators B Chem 243, 311 (2017)

    Article  Google Scholar 

  38. Nair, R.V., Vijaya, R.: Prog. Quantum Electron. 34, 89 (2010)

    Article  ADS  Google Scholar 

  39. Inan, H., Poyraz, M., Inci, F., Lifson, M.A., Baday, M., Cunningham, B.T., Demirci, U.: Chem. Soc. Rev. 46, 366 (2017)

    Article  Google Scholar 

  40. Nagarajan, R., Joyner, C.H., Schneider, R.P., Bostak, J.S., Butrie, T., Dentai, A.G., Dominic, V.G., Evans, P.W., Kato, M., Kauffman, M., Lambert, D.J.H., Mathis, S.K., Mathur, A., Miles, R.H., Mitchell, M.L., Missey, M.J., Murthy, S., Nilsson, A.C., Peters, F.H., Pennypacker, S.C., Pleumeekers, J.L., Salvatore, R.A., Schlenker, R.K., Taylor, R.B., Tsai, H.-S., Leeuwen, M.F.V., Webjorn, J., Ziari, M., Perkins, D., Singh, J., Grubb, S.G., Reffle, M.S., Mehuys, D.G., Kish, F.A., Welch, D.F.: IEEE J. Sel. Top. Quantum Electron 11, 50 (2005)

    Article  ADS  Google Scholar 

  41. Argyris, A., Hamacher, M., Chlouverakis, K.E., Bogris, A., Syvridis, D.: Phys. Rev. Lett. 100, 194101 (2008)

    Article  ADS  Google Scholar 

  42. Gray, D.E.: American institute of physics handbook, 3rd edn. McGraw-Hill, New York. https://www.amazon.com/American-Institute-Physics-Handbook-Third/dp/007001485X/ref=sr_1_1?s=books&ie=UTF8&qid=1525386207&sr=1-1 (1972)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arafa H. Aly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aly, A.H., Ameen, A.A. & Vigneswaran, D. Superconductor Nanometallic Photonic Crystals as a Novel Smart Window for Low-Temperature Applications. J Supercond Nov Magn 32, 191–197 (2019). https://doi.org/10.1007/s10948-018-4716-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4716-6

Keywords

Navigation