Synthesis, Structural, Electronic, and Magnetic Properties of Cubic Perovskite La1−xBa x MnO3 (0.125 ≤ x ≤ 0.875) for Spintronic Devices

  • Nisar Ahmed
  • Sikandar Khan
  • Ayaz Arif Khan
  • Azeem G. Nabi
  • Hussain Ahmed
  • Zia ur Rehman
  • M. H. Nasim
Original Paper


In this study, La0.5Ba0.5MnO3 has been synthesized by hydrothermal method. Crystal structure and morphology are determined by x-ray diffraction and scanning electron microscopy. It is observed that Ba-doped LaMnO3 (LMO) has the same cubic crystal structure as the host material with space group \(\text {Pm}\bar {3}\mathrm {m}\). Half of the La atoms are replaced by Ba in the composition. Further, the electronic and magnetic structures are investigated by solving the Kohn-Sham equation with the full-potential linearized augmented plane wave method (FP-LAPW), with GGA+U approximation for exchange and correlation, for Ba concentration from 12.5 to 87.5%. The system is half-metallic ferromagnetic (FM) up to 55% and then converts into anti-ferromagnetic (AFM). This happens due to the onset of super exchange on increasing Ba concentrations. It is suggested that Ba-doped LMO is the best material for the fabrication of an exchange-biased spin valve. The spacer material can be any non-magnetic cubic perovskite such as BaTiO3 while the FM and AFM layers can be made of Ba-doped LMO with different concentrations of Ba.

Graphical Abstract

Magnetic Phase Diagram of LBMO: A potential candidate for Spin-biased MTJ.


Hydrothermal process DFT GGA+U Ferromagnetism Anti-ferromagnetism 



Nisar Ahmed gratefully acknowledges the financial support of the Higher Education Commission (HEC), Pakistan, for Ph.D. (Indigenous) Fellowship under scholarship No. 112-25387-2PS1-477 /HEC/Ind-Sch-Phase-II/2012.


  1. 1.
    Choithrani, R., Gaur, N.K.: Analysis of low temperature specific heat in Nd0.5Sr0.5MnO3 and R0.5Ca0.5MnO3 (R=Nd, Sm, Dy and Ho) compounds. J. Magn. Magn. Mater. 320, 3384–3389 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Hohenberg, P., Hohenberg, P., Kohn, W.: Phys. Rev. 136, B864 (1964). Phys. Rev. 136 B864 (1964)CrossRefGoogle Scholar
  3. 3.
    Coey, J.M.D., Viret, M., von Molnár, S.: Mixed-valence manganites. Adv. Phys. 48, 167–293 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    Wollan, E.O., Koehler, W.C.: Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds [(1 −x)La, x Ca]MnO3. Phys. Rev. 100, 545–563 (1955)ADSCrossRefGoogle Scholar
  5. 5.
    Banach, G., Temmerman, W.M.: Pressure induced charge disproportionation in LaMnO3. J. Phys.: Condens. Matter 16, S5633 (2004)ADSGoogle Scholar
  6. 6.
    Fuks, D., Dorfman, S., Felsteiner, J., Bakaleinikov, L., Gordon, A., Kotomin, E.A.: Ab initio calculations of atomic an electronic structure of LaMnO3 and SrMnO3. Solid State Ion. 173, 107–111 (2004)CrossRefGoogle Scholar
  7. 7.
    Gaur, N., Choithrani, R., Srivastava, A.: Elastic moduli and thermal properties of La0.83 Sr0.17 MnO3. Solid State Commun. 145, 308–311 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Chen, Y., Ueland, B., Lynn, J., Bychkov, G., Barilo, S., Mukovskii, Y.M.: Polaron formation in the optimally doped ferromagnetic manganites La0.7Sr0.3 MnO3 and La0.7 Ba0.3 MnO3. Phys. Rev. B 78, 212301 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., Luitz, J.: wien2k: An augmented plane wave+ local orbitals program for calculating crystal properties (2001)Google Scholar
  10. 10.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    Lee, Y.-L., Morgan, D., Kleis, J., Rossmeisl, J.: Ab initio defect energetics in LaBO3 perovskite solid oxide fuel cell materials. ECS Trans. 25, 2761–2767 (2009)CrossRefGoogle Scholar
  12. 12.
    Wang, L., Maxisch, T., Ceder, G.: Oxidation energies of transition metal oxides within the GGA+ U framework. Phys. Rev. B 73, 195107 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Momma, K., Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011)CrossRefGoogle Scholar
  14. 14.
    Birch, F.: Finite elastic strain of cubic crystals. Phys. Rev. 71, 809–824 (1947)ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    Ahmed, N., Nisar, J., Kouser, R., Nabi, A.G., Mukhtar, S., Saeed, Y., Nasim, M.: Study of electronic, magnetic and optical properties of KMS2 (M= Nd, Ho, Er and Lu): first principle calculations. Mater. Res. Express 4, 065903 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Urban, J.J., Ouyang, L., Jo, M.-H., Wang, D.S., Park, H.: Synthesis of single-crystalline La1-x Ba x MnO3 nanocubes with adjustable doping levels. Nano Lett. 4, 1547–1550 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Cui, X.Y., Medvedeva, J.E., Delley, B., Freeman, A.J., Newman, N., Stampfl, C.: Role of Embedded clustering in dilute magnetic semiconductors: Cr Doped GaN. Phys. Rev. Lett. 95, 256404 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Barnabe, A., Millange, F., Maignan, A., Hervieu, M., Raveau, B., Van Tendeloo, G., Laffez, P.: Barium-Based Manganites Ln1-x Ba x MnO3 with Ln={Pr, La}: phase transitions and magnetoresistance properties. Chem. Mater. 10, 252–259 (1998)CrossRefGoogle Scholar
  19. 19.
    Bhavani, A.G., Kim, W.Y., Lee, J.S.: Barium substituted lanthanum manganite perovskite for CO2 reforming of methane. ACS Catal. 3, 1537–1544 (2013)CrossRefGoogle Scholar
  20. 20.
    Jativa, J., Jurado, J., Vargas-Hernandez, C.: Hydrothermal synthesis, magnetic susceptibility, electrical transport and vibrational order of the polycrystalline structure La0.5 Ba0.5 MnO3. Rev. Mex. Fís. 58, 19–23 (2012)Google Scholar
  21. 21.
    Iqbal, M., Khan, M.N., Khan, A.A., Zaka, I., Hussain, S., Ch, M.S., Mehmood, A.: Structure and charge transport mechanism in hydrothermally synthesized (La 0.5 Ba 0.5 MnO 3) cubic perovskite manganite. J. Mater. Sci. Mater. Electron. 28, 15065–15073 (2017)CrossRefGoogle Scholar
  22. 22.
    Mandal, P., Ghosh, B.: Transport, magnetic and structural properties of La 1- x M x MnO 3 (M = Ba, Sr, Ca) for 0\(< \sim \)x\(< \sim \)0.20. Phys. Rev. B 68, 014422 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    Bowen, M., Barthélémy, A., Bellini, V., Bibes, M., Seneor, P., Jacquet, E., Contour, J.-P., Dederichs, P.: Observation of Fowler–Nordheim hole tunneling across an electron tunnel junction due to total symmetry filtering. Phys. Rev. B 73, 140408 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Greullet, F., Tiusan, C., Montaigne, F., Hehn, M., Halley, D., Bengone, O., Bowen, M., Weber, W.: Evidence of a symmetry-dependent metallic barrier in fully epitaxial MgO based magnetic tunnel junctions. Phys. Rev. Lett. 99, 187202 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Matsumoto, R., Fukushima, A., Yakushiji, K., Nishioka, S., Nagahama, T., Katayama, T., Suzuki, Y., Ando, K., Yuasa, S.: Spin-dependent tunneling in epitaxial Fe/Cr/MgO/Fe magnetic tunnel junctions with an ultrathin Cr(001) spacer layer. Phys. Rev. B 79, 174436 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Bowen, M., Bibes, M., Barthélémy, A., Contour, J.-P., Anane, A., Lemaıtre, Y., Fert, A.: Nearly total spin polarization in La 2/3 Sr 1/3 MnO 3 from tunneling experiments. Appl. Phys. Lett. 82, 233–235 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Applied Mathematics (DPAM)Pakistan Institute of Engineering and Applied Sciences (PIEAS)NilorePakistan
  2. 2.Department of PhysicsUniversity of AJ&KMuzzafar AbadPakistan
  3. 3.Department of PhysicsUniversity of GujratGujratPakistan
  4. 4.Department of PhysicsAllama Iqbal Open UniversityIslamabadPakistan

Personalised recommendations