Surface Superconductivity in Ni50Mn36Sn14 Heusler Alloy

  • Ayşe Duran
Original Paper


The changes in the magnetizations of Ni50Mn36Sn14 Heusler alloy (L21-NiMnSn-HA) with an antiferromagnetic interfacial exchange coupling have been investigated by using the effective field theory as a function of temperature and external magnetic field. It is shown that the Ni component is antiferromagnetic and its other components are ferromagnetic while the L21-NiMnSn-HA has a ferrimagnetic ordering below TC. And, they are paramagnetic above TC. The L21-NiMnSn-HA and its Ni component have the triple hysteresis loops below T* and the other components have only single hysteresis loop below TC. It is found that they exhibit type II/1 superconductivity at higher external magnetic field below T* and type II/2 superconductivity at lower external magnetic field above T*. Moreover, it is suggested that the surface superconductivity emerges below the conversion temperature of T≈ 0.74 and can be associated with the triple hysteresis loops which occur in the systems with an antiferromagnetic interfacial exchange coupling. And, the vortex state terminates at TV ≈ 4.37 for the Ni component of the L21-NiMnSn-HA. The HC-T phase diagrams of the L21-NiMnSn-HA and its Ni component are in qualitatively good agreement with the experimental and theoretical findings.


Ni50Mn36Sn14 Heusler alloy Conversion temperature Antiferromagnetic interfacial exchange coupling Superconductivity Phase diagram Effective field theory 


Funding Information

This work was supported by Dumlupınar University Scientific Research Projects Commission (BAP: 2017-02).


  1. 1.
    Dan, N.H., Duc, N.H., Yen, N.H., Thanh, P.T., Bau, L.V., An, N.M., Anh, D.T.K., Bang, N.A., Mai, N.T., Anh, P.K., Thanh, T.D., Phan, T.L., Yu, S.C.: Magnetic properties and magnetocaloric effect in Ni–Mn–Sn alloys. J. Magn. Magn. Mater. 374, 372–375 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    Pal, D., Ghosh, A., Mandal, K.: Large inverse magnetocaloric effect and magnetoresistance in nickel rich Ni52Mn34Sn14. Heusler alloy 360, 183–187 (2014)Google Scholar
  3. 3.
    Sharma, J., Suresh, K.G.: Martensitic transition, magnetic, magnetocaloric and exchange bias properties of Fe-substituted Mn–Ni–Sn Heusler alloys. Solid State Commun. 248, 1–5 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Gencer, A., Ercan, I.: AC magnetic response of an Ni81Mn19 alloy. Int. J. Mod. Phys. B 12(2), 143–154 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    Gencer, A., Ercan, I., Özçelik, B.: Harmonic susceptibilities of an alloy of Ni77Mn23. J. Phys. Condens. Matter 10(1), 191–203 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    Pramanick, S., Chatterjee, S., Giri, S., Majumdar, S., Koledov, V.V., Mashirov, A., Aliev, A.M., Batdalov, A.B., Hernando, B., Rosa, W.O., González-Legarreta, L.: Multiple magneto-functional properties of Ni46Mn41In13 shape memory alloy. J. Alloys Comp. 587, 157–161 (2013)CrossRefGoogle Scholar
  7. 7.
    Bruno, N.M., Salas, D., Wang, S., Roshchin, I.V., Santamarta, R., Arroyave, R., Duong, T., Chumlyakov, Y.I., Karaman, I.: On the microstructural origins of martensitic transformation arrest in a NiCoMnIn magnetic shape memory alloy. Acta Mater. 142, 95–106 (2018)CrossRefGoogle Scholar
  8. 8.
    Krenke, T., Duman, E., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A.: Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nat. Mater. 4(6), 450–454 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Duran, A.: Lattice location effect of Ni50Mn36Sn14 Heusler alloy, . J. Supercond. Nov. Magn. 31(4), 1101–1109 (2018)CrossRefGoogle Scholar
  10. 10.
    Golub, V.O., Lvov, V.A., Aseguinolaza, I., Salyuk, O., Popadiuk, D., Kharlan, Y., Kakazei, G.N., Araujo, J.P., Barandiaran, J.M., Chernenko, V.A.: Antiferromagnetic coupling between martensitic twin variants observed by magnetic resonance in Ni-Mn-Sn-Co films. Phys. Rev. B 95(2), 024422 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    Freeman, A.J., Nakamura, K.: Modern computational magnetism: Role of noncollinear magnetism in complex magnetic phenomena. Physica Status Solidi (B) Basic Res. 241 (7), 1399–1405 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Alzahrani, S., Khan, M.: Superconducting properties of Zr1 + xNi2−xGa and Zr1−xNi2+xGa Heusler compounds. AIP Adv. 7(5), 055706 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Tütüncü, H.M., Karaca, E., Srivastava, G.P.: Electron–phonon interaction and superconductivity in the La3Ni2B2N3. Philos. Mag. 97(2), 128–143 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    Wiendlocha, B., Szczèśniak, R., Durajski, A.P., Muras, M.: Pressure effects on the unconventional superconductivity of noncentrosymmetric LaNiC2. Phys. Rev. B 94(13), 134517 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Jasiewicz, K., Wiendlocha, B., Korbeń, P., Kaprzyk, S., Tobola, J.: Superconductivity of Ta34Nb33Hf8Zr14Ti11 high entropy alloy from first principles calculations. Phys. Status Solidi Rapid Res. Lett. 10(5), 415–419 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Gupta, S., Suresh, K.G.: Review on magnetic and related properties of RTX compounds. J. Alloys Compd. 618, 562–606 (2015)CrossRefGoogle Scholar
  17. 17.
    Sreenivasa Reddy, P.V., Kanchana, V., Vaitheeswaran, G., Singh, D.J.: Predicted superconductivity of Ni2VAl and pressure dependence of superconductivity in Ni2NbX (X = Al, Ga and Sn) and Ni2VAl. J. Phys. Cond. Matt. 28(11), 115703 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Pal, S.: Structural and electronic properties of superconducting Heusler alloy Ni2Nb1+xSn1−x: Ab initio approach. Comput. Mater. Sci. 73, 65–71 (2013)CrossRefGoogle Scholar
  19. 19.
    Freeman, A.J., Nakamura, K., Ito, T.: Noncollinear magnetism phenomena induced at surfaces, domain walls and in vortex cores of magnetic quantum dots. J. Magn. Magn. Mater. 272–276, 1122–1127 (2004)CrossRefGoogle Scholar
  20. 20.
    Zhao, J., Chen, J., Xu, S., Shao, M., Zhang, Q., Wei, F., Ma, J., Wei, M., Evans, D.G., Duan, X.: Hierarchical NiMn layered double hydroxide/carbon nanotubes Architecture with superb energy density for Flexible supercapacitors. Adv. Funct. Mater. 1–9 (2014)Google Scholar
  21. 21.
    Çakır, A., Acet, M., Wiedwald, U., Krenke, T., Farle, M.: Shell-ferromagnetic precipitation in martensitic off-stoichiometric Ni-Mn-In Heusler alloys produced by temper-annealing under magnetic field. Acta Mater. 127, 117–123 (2017)CrossRefGoogle Scholar
  22. 22.
    Tang, M.H., Zhang, Zongzhi, Tian, S.Y., Wang, J., Ma, B., Jin, Q.Y.: Interfacial exchange coupling and magnetization reversal in perpendicular [Co/Ni]N/TbCo composite structures. Sci. Rep. 5, 10863 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Leonid, A., Sergei, A., Ilia, I.: Size effect on the hysteresis characteristics of a system of interacting core/shell nanoparticles. J. Magn. Magn. Mater 447, 88–95 (2018)CrossRefGoogle Scholar
  24. 24.
    Chaudhuri, R. G., Paria, S.: Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012)CrossRefGoogle Scholar
  25. 25.
    Kim, Y., Park, K. Y., Jang, D. M., Song, Y. M., Kim, H. S., Cho, Y. J., Myung, Y., Park, J.: Synthesis of Au-Cu2S core-shell nanocrystals and their photocatalytic and electrocatalytic activity. J. Phys. Cshem. C 114, 22141–22146 (2010)CrossRefGoogle Scholar
  26. 26.
    Teng, X., Black, D., Watkins, N. J., Gao, Y., Yang, H: Platinum-maghemite core-shell nanoparticles using a sequential synthesis. Nano Lett 3, 261–264 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    López-Ortega, A., Estrader, M., Salazar-Alvarez, G., Roca, A.G., Nogués, J.: Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Phys. Rep. 553, 1–32 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Liu, T.-Y., Hu, S.-H., Liu, D.-M., Chen, S.-Y., Chen, I.-W.: Biomedical nanoparticle carriers with combined thermal and magnetic responses. Nano Today 4(1), 52–65 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    Benhouria, Y., Essaoudi, I., Ainane, A., Ahuja, R., Dujardin, F.: The dielectric properties and the hysteresis loops of the spin-1 Ising nanowire system with the effect of a negative core/shell coupling: A Monte Carlo study. Superlattice. Microst. 73, 121–135 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    Magoussi, H., Zaim, A., Kerouad, M.: Magnetic properties of a nanoscaled ferrimagnetic thin film: Monte Carlo and effective field treatments. Superlattice. Microst. 89, 188–203 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    Kaneyoshi, T.: Amorphization in an Ising nanowire; Unconventio- nal effects of a uniformly applied transverse field. Phase Transit. 90(5), 475–484 (2017)CrossRefGoogle Scholar
  32. 32.
    Kaneyoshi, T.: Unconventional effects of transverse fields in a transverse Ising Nanotube. J. Supercond. Nov. Magn. 31(2), 483-492 (2018)CrossRefGoogle Scholar
  33. 33.
    Kaneyoshi, T.: Effects of random fields in an antiferromagnetic Ising bilayer film. Physica E: Low-Dimen. Syst. Nanostruct. 94, 184–189 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    Kaneyoshi, T.: Effects of a transverse field in two mixed-spin ising bilayer films. Nanomaterials 7(9), 256 (2017)CrossRefGoogle Scholar
  35. 35.
    Kaneyoshi, T.: Compensation point phenomena in a transverse Ising antiferromagnet: Unconventional effects of an applied magnetic field. J. Supercond. Nov. Magn. 30(5), 1309–1315 (2017)CrossRefGoogle Scholar
  36. 36.
    Şarlı, N.: Generation of an external magnetic field with the spin orientation effect in a single layer Ising nanographene. Physica E 83, 22–29 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    Şarlı, N., Akbudak, S., Ellialtıoğlu, M.R.: The peak effect (PE) region of the antiferromagnetic two layer Ising nanographene. Physica B 452, 18–22 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    Şarlı, N., Akbudak, S., Polat, Y., Ellialtıoğlu, M.R.: Effective distance of a ferromagnetic trilayer Ising nanostructure with an ABA stacking sequence. Physica A 434, 194–200 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    Şarlı, N.: The effects of next nearest-neighbor exchange interaction on the magnetic properties in the one-dimensional Ising system. Physica E: Low-Dimens. Syst. Nanostruct. 63, 324–328 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    Ertaş, M., Kocakaplan, Y.: Dynamic behaviors of the hexagonal Ising nanowire. Phys. Lett. A 378, 845–850 (2014)ADSCrossRefzbMATHGoogle Scholar
  41. 41.
    Kocakaplan, Y., Kantar, E., Keskin, M.: Hysteresis loops and compensation behavior of cylindrical transverse spin-1 Ising nanowire with the crystal field within effective-field theory based on a probability distribution technique. Europ. Phys. J. B 86, 420 (2013)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Keskin, M., Şarlı, N.: Magnetic properties of the binary Nickel/Bismuth alloy. J. Magn. Magn. Mater. 437, 1–6 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    Zaim, A., Kerouad, M., Boughrara, M.: Effects of the random field on the magnetic behavior of nanowires with core/shell morphology. J. Magn. Magn. Mater. 331, 37–44 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    Kantar, E.: Superconductivity-like phenomena in an ferrimagnetic endohedral fullerene with diluted magnetic surface. Solid State Commun. 263, 31–37 (2017)ADSCrossRefGoogle Scholar
  45. 45.
    Şarlı, N.: Superconductor core effect of the body centered orthorhombic nanolattice structure. J. Supercond. Nov. Magn. 28(8), A014, 2355–2363 (2015)Google Scholar
  46. 46.
    Wang, C.D., Ma, R.G.: Force induced phase transition of honeycomb-structured ferroelectric thin film. Physica A 392, 3570–3577 (2013)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Jiangn, W., Li, X.-X., Liu, L.-M., Chen, J.-N., Zhang, F.: Hysteresis loop of a cubic nanowire in the presence of the crystal field and the transverse field. J. Magn. Magn. Mater. 353, 90–98 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    Keskin, M., Şarlı, N., Deviren, B.: Hysteresis behaviors in a cylindrical Ising nanowire. Solid State Commun. 151, 1025–1030 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    Şarlı, N.: Artificial magnetism in a carbon diamond nanolattice with the spin orientation effect. Diamond Relat. Mater. 64, 103–109 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    Şarlı, N., Keskin, M.: Two distinct magnetic susceptibility peaks and magnetic reversal events in a cylindrical core/shell spin-1 Ising nanowire. Solid State Commun. 152, 354–359 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    Kantar, E., Keskin, M.: Thermal and magnetic properties of ternary mixed Ising nanoparticles with core–shell structure: Effective-field theory approach. J. Magn. Magn. Mater. 349, 165–172 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    Magoussi, H., Zaim, A., Kerouad, M.: Effects of the trimodal random field on the magnetic properties of a spin-1 nanotube. Chin. Phys. B 22(11), 116401 (1–8) (2013)CrossRefGoogle Scholar
  53. 53.
    Şarlı, N.: Paramagnetic atom number and paramagnetic critical pressure of the sc, bcc and fcc nanolattices. J. Magn. Magn. Mater. 374, 238–244 (2015)ADSCrossRefGoogle Scholar
  54. 54.
    Bouhou, S., Essaoudi, I., Ainane, A., Saber, M., Ahuja, R., Dujardin, F.: Phase diagrams of diluted transverse Ising nanowire. J. Magn. Magn. Mater. 336, 75–82 (2013)ADSCrossRefGoogle Scholar
  55. 55.
    Deviren, B., Şener, Y., Keskin, M.: Dynamic magnetic properties of the kinetic cylindrical Ising nanotube. Physica A 392, 3969–3983 (2013)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    Jiang, W., Li, X.X., Liu, L.M.: Surface effects on a multilayer and multisublattice cubic nanowire with core/Shell. Physica E 53, 29–35 (2013)ADSCrossRefGoogle Scholar
  57. 57.
    Kantar, E.: Composition, temperature and geometric dependent hysteresis behaviours in Ising-type segmented nanowire with magnetic and diluted magnetic, and its soft/hard magnetic characteristics. Philos. Mag. 97(6), 431–450 (2017)ADSCrossRefGoogle Scholar
  58. 58.
    Raji, G.R., Uthaman, B., Rajan, R.K., Sharannia, M.P., Thomas, S., Suresh, K.G., Varma, M.R.: Martensitic transition, spin glass behavior and exchange bias in Si substituted Ni50Mn36Sn14 Heusler alloys. RSC Adv. 6, 32037–32045 (2016)CrossRefGoogle Scholar
  59. 59.
    Yasukōchi, K., Kanematsu, K., Ohoyama, T.: Magnetic properties of intermetallic compounds in Manganese-Tin System: Mn3.67Sn, Mn1.77Sn, and MnSn2. J. Phys. Soc. Jpn. 16(6), 1123–1130 (1961)ADSCrossRefGoogle Scholar
  60. 60.
    Passamani, E.C., Cordova, C., Alves, A.L., Moscon, P.S., Larica, C., Takeuchi, A.Y., Biondo, A.: Magnetic studies of Fe-doped martensitic Ni2Mn1.44Sn0.56 Heusler alloy. J. Phys. D: Appl. Phys. 42, 215006 (2009)ADSCrossRefGoogle Scholar
  61. 61.
    Song, Y., Dong, S., Zhao, H.: First-principles study of pressure-induced structural and magnetic phase transitions of binary ferromagnets: MnSn and MnSb. J. Supercond. Nov. Magn. 27(5), 1257–1264 (2014)CrossRefGoogle Scholar
  62. 62.
    Diaz, I.J.L., Branco, N.S.: Ferrimagnetism and compensation temperature in spin-1/2 Ising trilayers. Phys. B Condens. Matter 529, 73–79 (2017)ADSCrossRefGoogle Scholar
  63. 63.
    Jing, C., Qiao, Y.F., Li, Z., Chen, J.P., Cao, S.X., Zhang, J.C.: Electronic structure and magnetism of NixMn1−x alloys. Modern Phys. Lett. B 23(5), 689–698 (2009)ADSCrossRefGoogle Scholar
  64. 64.
    Grünebohm, A., Herper, H.C., Entel, P.: On the rich magnetic phase diagram of (Ni, Co)-Mn-Sn Heusler alloys. J. Phys. D: Appl. Phys. 49(39), 395001 (2016)CrossRefGoogle Scholar
  65. 65.
    Yaqoob Khan, M., Wu, C.-B., Erkovan, M., Kuch, W.: Probing antiferromagnetism in NiMn/Ni/(Co)/Cu3Au(001) single-crystalline epitaxial thin films. J. Appl. Phys. 113(2), 023913 (2013)ADSCrossRefGoogle Scholar
  66. 66.
    Singh, N., Borgahain, B., Srivastava, A.K., Dhar, A., Singh, H.K.: Magnetic nature of austenite-martensite phase transition and spin glass behaviour in nanostructured Mn2Ni1.6Sn0.4 melt-spun ribbons. Appl. Phys. A 122(3), 237 (2016)ADSCrossRefGoogle Scholar
  67. 67.
    Erkovan, M., Shokr, Y.A., Schiestl, D., Wu, C.-B., Kuch, W.: Influence of NixMn1−x thickness and composition on the Curie temperature of Ni in NixMn1−x/Ni bilayers on Cu3Au(001). J. Magn. Magn. Mater. 373, 151–154 (2015)ADSCrossRefGoogle Scholar
  68. 68.
    Cong, D.Y., Roth, S., Wang, Y. D.: Superparamagnetism and superspin glass behaviors in multiferroic NiMn-based magnetic shape memory alloys. Phys. Status Solidi (B) 251(10), 2126–2134 (2014)ADSCrossRefGoogle Scholar
  69. 69.
    Higgs, T. D. C., Bonetti2, S., Ohldag, H., Banerjee, N., Wang, X. L., Rosenberg, A. J., Cai, Z., Zhao, J. H., Moler, K. A., Robinson, J. W. A.: Magnetic coupling at rare earth ferromagnet/transition metal ferromagnet interfaces: A comprehensive study of Gd/Ni. Nat. Sci. Rep. 6, 30092 (2016)Google Scholar
  70. 70.
    Macedo, W.A.A., Gastelois, P.L., Martins, M.D., Kuch, W., Miguel, J., Khan, M.Y.: Growth, structure, and magnetic properties of epitaxial NixMn100-x single layers and Co/NixMn 100-x bilayers on Cu3Au(100 ). Phys. Rev. B 82, 134423 (2010)ADSCrossRefGoogle Scholar
  71. 71.
    Reinhardt, M., Seifert, J., Busch, M., Winter, H.: Magnetic interface coupling between ultrathin Co and Nix Mn 100-x films on Cu(001). Phys. Rev. B 81(13), 134433 (2010)ADSCrossRefGoogle Scholar
  72. 72.
    Tieg, C., Kuch, W., Wang, S.G., Kirschner, J.: Growth, structure, and magnetism of single-crystalline Nix Mn100-x films and NiMn/Co bilayers on Cu(001). Phys. Rev. B 74(9), 094420 (2006)ADSCrossRefGoogle Scholar
  73. 73.
    Dimitri Ngantso, G., El Amraoui, Y., Benyoussef, A., El Kenz, A.: Effective field study of ising model on a double perovskite structure. J. Magn. Magn. Mater. 423, 337–342 (2017)ADSCrossRefGoogle Scholar
  74. 74.
    Kimura, N., Kabeya, N., Saitoh, K., Satoh, K., Ogi, H., Ohsaki, K., Aoki, H.: Type II/1 Superconductivity with Extremely High H c3 in Noncentrosymmetric LaRhSi3. J. Phys. Soc. Jpn. 85, 024715 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Automation, Kutahya Vocational School of Technical SciencesDumlupınar UniversityKutahyaTurkey

Personalised recommendations