Skip to main content
Log in

Surface Superconductivity in Ni50Mn36Sn14 Heusler Alloy

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The changes in the magnetizations of Ni50Mn36Sn14 Heusler alloy (L21-NiMnSn-HA) with an antiferromagnetic interfacial exchange coupling have been investigated by using the effective field theory as a function of temperature and external magnetic field. It is shown that the Ni component is antiferromagnetic and its other components are ferromagnetic while the L21-NiMnSn-HA has a ferrimagnetic ordering below TC. And, they are paramagnetic above TC. The L21-NiMnSn-HA and its Ni component have the triple hysteresis loops below T* and the other components have only single hysteresis loop below TC. It is found that they exhibit type II/1 superconductivity at higher external magnetic field below T* and type II/2 superconductivity at lower external magnetic field above T*. Moreover, it is suggested that the surface superconductivity emerges below the conversion temperature of T≈ 0.74 and can be associated with the triple hysteresis loops which occur in the systems with an antiferromagnetic interfacial exchange coupling. And, the vortex state terminates at TV ≈ 4.37 for the Ni component of the L21-NiMnSn-HA. The HC-T phase diagrams of the L21-NiMnSn-HA and its Ni component are in qualitatively good agreement with the experimental and theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dan, N.H., Duc, N.H., Yen, N.H., Thanh, P.T., Bau, L.V., An, N.M., Anh, D.T.K., Bang, N.A., Mai, N.T., Anh, P.K., Thanh, T.D., Phan, T.L., Yu, S.C.: Magnetic properties and magnetocaloric effect in Ni–Mn–Sn alloys. J. Magn. Magn. Mater. 374, 372–375 (2015)

    Article  ADS  Google Scholar 

  2. Pal, D., Ghosh, A., Mandal, K.: Large inverse magnetocaloric effect and magnetoresistance in nickel rich Ni52Mn34Sn14. Heusler alloy 360, 183–187 (2014)

    Google Scholar 

  3. Sharma, J., Suresh, K.G.: Martensitic transition, magnetic, magnetocaloric and exchange bias properties of Fe-substituted Mn–Ni–Sn Heusler alloys. Solid State Commun. 248, 1–5 (2016)

    Article  ADS  Google Scholar 

  4. Gencer, A., Ercan, I.: AC magnetic response of an Ni81Mn19 alloy. Int. J. Mod. Phys. B 12(2), 143–154 (1998)

    Article  ADS  Google Scholar 

  5. Gencer, A., Ercan, I., Özçelik, B.: Harmonic susceptibilities of an alloy of Ni77Mn23. J. Phys. Condens. Matter 10(1), 191–203 (1998)

    Article  ADS  Google Scholar 

  6. Pramanick, S., Chatterjee, S., Giri, S., Majumdar, S., Koledov, V.V., Mashirov, A., Aliev, A.M., Batdalov, A.B., Hernando, B., Rosa, W.O., González-Legarreta, L.: Multiple magneto-functional properties of Ni46Mn41In13 shape memory alloy. J. Alloys Comp. 587, 157–161 (2013)

    Article  Google Scholar 

  7. Bruno, N.M., Salas, D., Wang, S., Roshchin, I.V., Santamarta, R., Arroyave, R., Duong, T., Chumlyakov, Y.I., Karaman, I.: On the microstructural origins of martensitic transformation arrest in a NiCoMnIn magnetic shape memory alloy. Acta Mater. 142, 95–106 (2018)

    Article  Google Scholar 

  8. Krenke, T., Duman, E., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A.: Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nat. Mater. 4(6), 450–454 (2005)

    Article  ADS  Google Scholar 

  9. Duran, A.: Lattice location effect of Ni50Mn36Sn14 Heusler alloy, . J. Supercond. Nov. Magn. 31(4), 1101–1109 (2018)

    Article  Google Scholar 

  10. Golub, V.O., Lvov, V.A., Aseguinolaza, I., Salyuk, O., Popadiuk, D., Kharlan, Y., Kakazei, G.N., Araujo, J.P., Barandiaran, J.M., Chernenko, V.A.: Antiferromagnetic coupling between martensitic twin variants observed by magnetic resonance in Ni-Mn-Sn-Co films. Phys. Rev. B 95(2), 024422 (2017)

    Article  ADS  Google Scholar 

  11. Freeman, A.J., Nakamura, K.: Modern computational magnetism: Role of noncollinear magnetism in complex magnetic phenomena. Physica Status Solidi (B) Basic Res. 241 (7), 1399–1405 (2004)

    Article  ADS  Google Scholar 

  12. Alzahrani, S., Khan, M.: Superconducting properties of Zr1 + xNi2−xGa and Zr1−xNi2+xGa Heusler compounds. AIP Adv. 7(5), 055706 (2017)

    Article  ADS  Google Scholar 

  13. Tütüncü, H.M., Karaca, E., Srivastava, G.P.: Electron–phonon interaction and superconductivity in the La3Ni2B2N3. Philos. Mag. 97(2), 128–143 (2017)

    Article  ADS  Google Scholar 

  14. Wiendlocha, B., Szczèśniak, R., Durajski, A.P., Muras, M.: Pressure effects on the unconventional superconductivity of noncentrosymmetric LaNiC2. Phys. Rev. B 94(13), 134517 (2016)

    Article  ADS  Google Scholar 

  15. Jasiewicz, K., Wiendlocha, B., Korbeń, P., Kaprzyk, S., Tobola, J.: Superconductivity of Ta34Nb33Hf8Zr14Ti11 high entropy alloy from first principles calculations. Phys. Status Solidi Rapid Res. Lett. 10(5), 415–419 (2016)

    Article  ADS  Google Scholar 

  16. Gupta, S., Suresh, K.G.: Review on magnetic and related properties of RTX compounds. J. Alloys Compd. 618, 562–606 (2015)

    Article  Google Scholar 

  17. Sreenivasa Reddy, P.V., Kanchana, V., Vaitheeswaran, G., Singh, D.J.: Predicted superconductivity of Ni2VAl and pressure dependence of superconductivity in Ni2NbX (X = Al, Ga and Sn) and Ni2VAl. J. Phys. Cond. Matt. 28(11), 115703 (2016)

    Article  ADS  Google Scholar 

  18. Pal, S.: Structural and electronic properties of superconducting Heusler alloy Ni2Nb1+xSn1−x: Ab initio approach. Comput. Mater. Sci. 73, 65–71 (2013)

    Article  Google Scholar 

  19. Freeman, A.J., Nakamura, K., Ito, T.: Noncollinear magnetism phenomena induced at surfaces, domain walls and in vortex cores of magnetic quantum dots. J. Magn. Magn. Mater. 272–276, 1122–1127 (2004)

    Article  ADS  Google Scholar 

  20. Zhao, J., Chen, J., Xu, S., Shao, M., Zhang, Q., Wei, F., Ma, J., Wei, M., Evans, D.G., Duan, X.: Hierarchical NiMn layered double hydroxide/carbon nanotubes Architecture with superb energy density for Flexible supercapacitors. Adv. Funct. Mater. 1–9 (2014)

  21. Çakır, A., Acet, M., Wiedwald, U., Krenke, T., Farle, M.: Shell-ferromagnetic precipitation in martensitic off-stoichiometric Ni-Mn-In Heusler alloys produced by temper-annealing under magnetic field. Acta Mater. 127, 117–123 (2017)

    Article  Google Scholar 

  22. Tang, M.H., Zhang, Zongzhi, Tian, S.Y., Wang, J., Ma, B., Jin, Q.Y.: Interfacial exchange coupling and magnetization reversal in perpendicular [Co/Ni]N/TbCo composite structures. Sci. Rep. 5, 10863 (2015)

    Article  ADS  Google Scholar 

  23. Leonid, A., Sergei, A., Ilia, I.: Size effect on the hysteresis characteristics of a system of interacting core/shell nanoparticles. J. Magn. Magn. Mater 447, 88–95 (2018)

    Article  Google Scholar 

  24. Chaudhuri, R. G., Paria, S.: Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012)

    Article  Google Scholar 

  25. Kim, Y., Park, K. Y., Jang, D. M., Song, Y. M., Kim, H. S., Cho, Y. J., Myung, Y., Park, J.: Synthesis of Au-Cu2S core-shell nanocrystals and their photocatalytic and electrocatalytic activity. J. Phys. Cshem. C 114, 22141–22146 (2010)

    Article  Google Scholar 

  26. Teng, X., Black, D., Watkins, N. J., Gao, Y., Yang, H: Platinum-maghemite core-shell nanoparticles using a sequential synthesis. Nano Lett 3, 261–264 (2003)

    Article  ADS  Google Scholar 

  27. López-Ortega, A., Estrader, M., Salazar-Alvarez, G., Roca, A.G., Nogués, J.: Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Phys. Rep. 553, 1–32 (2015)

    Article  ADS  Google Scholar 

  28. Liu, T.-Y., Hu, S.-H., Liu, D.-M., Chen, S.-Y., Chen, I.-W.: Biomedical nanoparticle carriers with combined thermal and magnetic responses. Nano Today 4(1), 52–65 (2009)

    Article  ADS  Google Scholar 

  29. Benhouria, Y., Essaoudi, I., Ainane, A., Ahuja, R., Dujardin, F.: The dielectric properties and the hysteresis loops of the spin-1 Ising nanowire system with the effect of a negative core/shell coupling: A Monte Carlo study. Superlattice. Microst. 73, 121–135 (2014)

    Article  ADS  Google Scholar 

  30. Magoussi, H., Zaim, A., Kerouad, M.: Magnetic properties of a nanoscaled ferrimagnetic thin film: Monte Carlo and effective field treatments. Superlattice. Microst. 89, 188–203 (2016)

    Article  ADS  Google Scholar 

  31. Kaneyoshi, T.: Amorphization in an Ising nanowire; Unconventio- nal effects of a uniformly applied transverse field. Phase Transit. 90(5), 475–484 (2017)

    Article  Google Scholar 

  32. Kaneyoshi, T.: Unconventional effects of transverse fields in a transverse Ising Nanotube. J. Supercond. Nov. Magn. 31(2), 483-492 (2018)

    Article  Google Scholar 

  33. Kaneyoshi, T.: Effects of random fields in an antiferromagnetic Ising bilayer film. Physica E: Low-Dimen. Syst. Nanostruct. 94, 184–189 (2017)

    Article  ADS  Google Scholar 

  34. Kaneyoshi, T.: Effects of a transverse field in two mixed-spin ising bilayer films. Nanomaterials 7(9), 256 (2017)

    Article  Google Scholar 

  35. Kaneyoshi, T.: Compensation point phenomena in a transverse Ising antiferromagnet: Unconventional effects of an applied magnetic field. J. Supercond. Nov. Magn. 30(5), 1309–1315 (2017)

    Article  Google Scholar 

  36. Şarlı, N.: Generation of an external magnetic field with the spin orientation effect in a single layer Ising nanographene. Physica E 83, 22–29 (2016)

    Article  ADS  Google Scholar 

  37. Şarlı, N., Akbudak, S., Ellialtıoğlu, M.R.: The peak effect (PE) region of the antiferromagnetic two layer Ising nanographene. Physica B 452, 18–22 (2014)

    Article  ADS  Google Scholar 

  38. Şarlı, N., Akbudak, S., Polat, Y., Ellialtıoğlu, M.R.: Effective distance of a ferromagnetic trilayer Ising nanostructure with an ABA stacking sequence. Physica A 434, 194–200 (2015)

    Article  ADS  Google Scholar 

  39. Şarlı, N.: The effects of next nearest-neighbor exchange interaction on the magnetic properties in the one-dimensional Ising system. Physica E: Low-Dimens. Syst. Nanostruct. 63, 324–328 (2014)

    Article  ADS  Google Scholar 

  40. Ertaş, M., Kocakaplan, Y.: Dynamic behaviors of the hexagonal Ising nanowire. Phys. Lett. A 378, 845–850 (2014)

    Article  ADS  Google Scholar 

  41. Kocakaplan, Y., Kantar, E., Keskin, M.: Hysteresis loops and compensation behavior of cylindrical transverse spin-1 Ising nanowire with the crystal field within effective-field theory based on a probability distribution technique. Europ. Phys. J. B 86, 420 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  42. Keskin, M., Şarlı, N.: Magnetic properties of the binary Nickel/Bismuth alloy. J. Magn. Magn. Mater. 437, 1–6 (2017)

    Article  ADS  Google Scholar 

  43. Zaim, A., Kerouad, M., Boughrara, M.: Effects of the random field on the magnetic behavior of nanowires with core/shell morphology. J. Magn. Magn. Mater. 331, 37–44 (2013)

    Article  ADS  Google Scholar 

  44. Kantar, E.: Superconductivity-like phenomena in an ferrimagnetic endohedral fullerene with diluted magnetic surface. Solid State Commun. 263, 31–37 (2017)

    Article  ADS  Google Scholar 

  45. Şarlı, N.: Superconductor core effect of the body centered orthorhombic nanolattice structure. J. Supercond. Nov. Magn. 28(8), A014, 2355–2363 (2015)

    Article  Google Scholar 

  46. Wang, C.D., Ma, R.G.: Force induced phase transition of honeycomb-structured ferroelectric thin film. Physica A 392, 3570–3577 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  47. Jiangn, W., Li, X.-X., Liu, L.-M., Chen, J.-N., Zhang, F.: Hysteresis loop of a cubic nanowire in the presence of the crystal field and the transverse field. J. Magn. Magn. Mater. 353, 90–98 (2014)

    Article  ADS  Google Scholar 

  48. Keskin, M., Şarlı, N., Deviren, B.: Hysteresis behaviors in a cylindrical Ising nanowire. Solid State Commun. 151, 1025–1030 (2011)

    Article  ADS  Google Scholar 

  49. Şarlı, N.: Artificial magnetism in a carbon diamond nanolattice with the spin orientation effect. Diamond Relat. Mater. 64, 103–109 (2016)

    Article  ADS  Google Scholar 

  50. Şarlı, N., Keskin, M.: Two distinct magnetic susceptibility peaks and magnetic reversal events in a cylindrical core/shell spin-1 Ising nanowire. Solid State Commun. 152, 354–359 (2012)

    Article  ADS  Google Scholar 

  51. Kantar, E., Keskin, M.: Thermal and magnetic properties of ternary mixed Ising nanoparticles with core–shell structure: Effective-field theory approach. J. Magn. Magn. Mater. 349, 165–172 (2014)

    Article  ADS  Google Scholar 

  52. Magoussi, H., Zaim, A., Kerouad, M.: Effects of the trimodal random field on the magnetic properties of a spin-1 nanotube. Chin. Phys. B 22(11), 116401 (1–8) (2013)

    Article  Google Scholar 

  53. Şarlı, N.: Paramagnetic atom number and paramagnetic critical pressure of the sc, bcc and fcc nanolattices. J. Magn. Magn. Mater. 374, 238–244 (2015)

    Article  ADS  Google Scholar 

  54. Bouhou, S., Essaoudi, I., Ainane, A., Saber, M., Ahuja, R., Dujardin, F.: Phase diagrams of diluted transverse Ising nanowire. J. Magn. Magn. Mater. 336, 75–82 (2013)

    Article  ADS  Google Scholar 

  55. Deviren, B., Şener, Y., Keskin, M.: Dynamic magnetic properties of the kinetic cylindrical Ising nanotube. Physica A 392, 3969–3983 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  56. Jiang, W., Li, X.X., Liu, L.M.: Surface effects on a multilayer and multisublattice cubic nanowire with core/Shell. Physica E 53, 29–35 (2013)

    Article  ADS  Google Scholar 

  57. Kantar, E.: Composition, temperature and geometric dependent hysteresis behaviours in Ising-type segmented nanowire with magnetic and diluted magnetic, and its soft/hard magnetic characteristics. Philos. Mag. 97(6), 431–450 (2017)

    Article  ADS  Google Scholar 

  58. Raji, G.R., Uthaman, B., Rajan, R.K., Sharannia, M.P., Thomas, S., Suresh, K.G., Varma, M.R.: Martensitic transition, spin glass behavior and exchange bias in Si substituted Ni50Mn36Sn14 Heusler alloys. RSC Adv. 6, 32037–32045 (2016)

    Article  Google Scholar 

  59. Yasukōchi, K., Kanematsu, K., Ohoyama, T.: Magnetic properties of intermetallic compounds in Manganese-Tin System: Mn3.67Sn, Mn1.77Sn, and MnSn2. J. Phys. Soc. Jpn. 16(6), 1123–1130 (1961)

    Article  ADS  Google Scholar 

  60. Passamani, E.C., Cordova, C., Alves, A.L., Moscon, P.S., Larica, C., Takeuchi, A.Y., Biondo, A.: Magnetic studies of Fe-doped martensitic Ni2Mn1.44Sn0.56 Heusler alloy. J. Phys. D: Appl. Phys. 42, 215006 (2009)

    Article  ADS  Google Scholar 

  61. Song, Y., Dong, S., Zhao, H.: First-principles study of pressure-induced structural and magnetic phase transitions of binary ferromagnets: MnSn and MnSb. J. Supercond. Nov. Magn. 27(5), 1257–1264 (2014)

    Article  Google Scholar 

  62. Diaz, I.J.L., Branco, N.S.: Ferrimagnetism and compensation temperature in spin-1/2 Ising trilayers. Phys. B Condens. Matter 529, 73–79 (2017)

    Article  ADS  Google Scholar 

  63. Jing, C., Qiao, Y.F., Li, Z., Chen, J.P., Cao, S.X., Zhang, J.C.: Electronic structure and magnetism of NixMn1−x alloys. Modern Phys. Lett. B 23(5), 689–698 (2009)

    Article  ADS  Google Scholar 

  64. Grünebohm, A., Herper, H.C., Entel, P.: On the rich magnetic phase diagram of (Ni, Co)-Mn-Sn Heusler alloys. J. Phys. D: Appl. Phys. 49(39), 395001 (2016)

    Article  Google Scholar 

  65. Yaqoob Khan, M., Wu, C.-B., Erkovan, M., Kuch, W.: Probing antiferromagnetism in NiMn/Ni/(Co)/Cu3Au(001) single-crystalline epitaxial thin films. J. Appl. Phys. 113(2), 023913 (2013)

    Article  ADS  Google Scholar 

  66. Singh, N., Borgahain, B., Srivastava, A.K., Dhar, A., Singh, H.K.: Magnetic nature of austenite-martensite phase transition and spin glass behaviour in nanostructured Mn2Ni1.6Sn0.4 melt-spun ribbons. Appl. Phys. A 122(3), 237 (2016)

    Article  ADS  Google Scholar 

  67. Erkovan, M., Shokr, Y.A., Schiestl, D., Wu, C.-B., Kuch, W.: Influence of NixMn1−x thickness and composition on the Curie temperature of Ni in NixMn1−x/Ni bilayers on Cu3Au(001). J. Magn. Magn. Mater. 373, 151–154 (2015)

    Article  ADS  Google Scholar 

  68. Cong, D.Y., Roth, S., Wang, Y. D.: Superparamagnetism and superspin glass behaviors in multiferroic NiMn-based magnetic shape memory alloys. Phys. Status Solidi (B) 251(10), 2126–2134 (2014)

    Article  ADS  Google Scholar 

  69. Higgs, T. D. C., Bonetti2, S., Ohldag, H., Banerjee, N., Wang, X. L., Rosenberg, A. J., Cai, Z., Zhao, J. H., Moler, K. A., Robinson, J. W. A.: Magnetic coupling at rare earth ferromagnet/transition metal ferromagnet interfaces: A comprehensive study of Gd/Ni. Nat. Sci. Rep. 6, 30092 (2016)

  70. Macedo, W.A.A., Gastelois, P.L., Martins, M.D., Kuch, W., Miguel, J., Khan, M.Y.: Growth, structure, and magnetic properties of epitaxial NixMn100-x single layers and Co/NixMn 100-x bilayers on Cu3Au(100 ). Phys. Rev. B 82, 134423 (2010)

    Article  ADS  Google Scholar 

  71. Reinhardt, M., Seifert, J., Busch, M., Winter, H.: Magnetic interface coupling between ultrathin Co and Nix Mn 100-x films on Cu(001). Phys. Rev. B 81(13), 134433 (2010)

    Article  ADS  Google Scholar 

  72. Tieg, C., Kuch, W., Wang, S.G., Kirschner, J.: Growth, structure, and magnetism of single-crystalline Nix Mn100-x films and NiMn/Co bilayers on Cu(001). Phys. Rev. B 74(9), 094420 (2006)

    Article  ADS  Google Scholar 

  73. Dimitri Ngantso, G., El Amraoui, Y., Benyoussef, A., El Kenz, A.: Effective field study of ising model on a double perovskite structure. J. Magn. Magn. Mater. 423, 337–342 (2017)

    Article  ADS  Google Scholar 

  74. Kimura, N., Kabeya, N., Saitoh, K., Satoh, K., Ogi, H., Ohsaki, K., Aoki, H.: Type II/1 Superconductivity with Extremely High H c3 in Noncentrosymmetric LaRhSi3. J. Phys. Soc. Jpn. 85, 024715 (2016)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by Dumlupınar University Scientific Research Projects Commission (BAP: 2017-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayşe Duran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duran, A. Surface Superconductivity in Ni50Mn36Sn14 Heusler Alloy. J Supercond Nov Magn 31, 4053–4062 (2018). https://doi.org/10.1007/s10948-018-4686-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4686-8

Keywords

Navigation