Effect of RF Power on Structural, Magnetic, and Optical Properties of CoFe2O4 Thin Films

Original Paper
  • 14 Downloads

Abstract

The thin films of CoFe2O4 were deposited on glass substrates by radio-frequency (RF) sputtering. The effect of RF power variation from 60–120 W on the structure, magnetic, and optical properties of the as-deposited films and films annealed at 500 °C was studied. The magnetic parameters of the film, i.e., in-plane coercivity (Hc), saturation magnetization (Ms), and remanence (Mr) increase as RF power is increased from 60 to 80 W followed by a decreasing trend with further increase in RF power to 120 W. Annealing of the film significantly improves the magnetic properties. The largest grain size and the best crystallinity of the film are obtained for the film deposited at 80 W of RF power. The thin films exhibited 70–80% optical transmittance. Optical band gap (Eg) depends on the RF power and grain size, and it varies between 2.08 and 2.16 eV for the as-deposited films and between 2.16 and 2.30 eV for the annealed films. The study shows that RF power used for depositing the film has strong effect on the microstructure and properties of the film.

Keywords

Cobalt ferrite Thin films RF magnetron sputtering RF power Magnetization Optical band gap 

References

  1. 1.
    Fontijn, W.F.J., van der Zaag, P.J., Feiner, L.F., Metselaar, R., Devillers, M.A.C.: A consistent interpretation of the magneto-optical spectra of spinel type ferrites (invited). J. Appl. Phys. 85, 5100 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    Suzuki, A.Y.: Epitaxial spinel ferrite thin films. Ann. Rev. Mater. Res. 31, 265 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Ramos, A.V., Santos, T.S., Miao, G.X., Guittet, M.-J., Moussy, J.-B., Moodera, J.S.: Influence of oxidation on the spin-filtering properties of CoFe2O4 and the resultant spin polarization. Phys. Rev. B 78, 180402 (R) (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Bouet, L., Tailhades, P., Rousset, A.: Relations between magneto-optical properties and reactivity in cobalt-manganese ferrite thin films and powders. J. Magn. Magn. Mater. 153, 389 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    Rondinone, A.J., Samia, A.C., Zhang, Z.J.: Characterizing the magnetic anisotropy constant of spinel cobalt ferrite nanoparticles. Appl. Phys. Lett. 76, 3624 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Sultan, M., Singh, R.: Magnetic and optical properties of RF-sputtered zinc ferrite thin films. J. Appl. Phys. 105, 07A512 (2009)CrossRefGoogle Scholar
  7. 7.
    Chavan, S.M., Babrekar, M.K., More, S.S., Jadhav, K.M.: Structural and optical properties of nanocrystalline Ni–Zn ferrite thin films. J. Alloy Comput. 507, 21 (2010)CrossRefGoogle Scholar
  8. 8.
    Ravindra, A.V., Padhan, P., Prellier, W.: Electronic structure and optical band gap of CoFe2O4 thin films. Appl. Phys. Lett. 101, 161902 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Sultan, M., Singh, R.: Structural and optical properties of RF-sputtered ZnFe2O4 thin films. J. Phys. D 42, 115306 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Zhang, Y., Du, G., Liu, D., Wang, X., Ma, Y., Wang, J., Yin, J., Yang, X., Hou, X., Yang, S.: Crystal growth of undoped ZnO films on Si substrates under different sputtering conditions. J. Cryst. Growth 243, 439 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Patterson, A.L.: The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978 (1939)ADSCrossRefMATHGoogle Scholar
  12. 12.
    Lee, J.-G., Chae, K. P., Sur, J.C.: Surface morphology and magnetic properties of CoFe2O4 thin films grown by a RF magnetron sputtering method. J. Magn. Magn. Mater. 267, 161 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Wang, Y.C., Ding, J., Yi, J.B., Liu, B.H., Yu, T., Shen, Z.X.: High-coercivity Co-ferrite thin films on (100)-SiO2 substrate. Appl. Phys. Lett. 84, 14 (2004)Google Scholar
  14. 14.
    Sunds, R.H.: Paramagnetic resonance absorption in glass. Phys. Rev. 99, 1222 (1955)ADSCrossRefGoogle Scholar
  15. 15.
    Davis, E.A., Mott, N.F.: Conduction in non-crystalline systems. V. Conductivity, optical absorption and photoconductivity in amorphous semiconductor. Philos. Mag. 22, 903 (1970)ADSCrossRefGoogle Scholar
  16. 16.
    Tauc, J., Grigorovici, R., Vancu, A.: Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15, 627 (1966)CrossRefGoogle Scholar
  17. 17.
    Tauc, J.: Amorphous and Liquid Semiconductors. Plenum, New York (1974)CrossRefGoogle Scholar
  18. 18.
    Erdem, D., Bingham, N.S., Heiligtag, F.J., Pilet, N., Warnicke, P., Heyderman, L.J., Niederberger, M.: CoFe2O4 and CoFe2O4-SiO2 nanoparticle thin films with perpendicular magnetic anisotropy for magnetic and magneto-optical applications. Adv. Func. Mater. 26, 1954 (2016)CrossRefGoogle Scholar
  19. 19.
    Rao, P., Godbole, R.V., Phase, D.M., Chikate, R.C., Bhagwat, S.: Ferrite thin films: synthesis, characterization and gas sensing properties towards LPG. Mater. Chem. Phys. 149–150, 333 (2015)CrossRefGoogle Scholar
  20. 20.
    Holinsworth, B.S., Mazumdar, D., Sims, H., Sun, Q.-C., Yurtisigi, M.K., Sarker, S.K., Gupta, A., Butler, W.H., Musfeldt, J.L.: Chemical tuning of the optical band gap in spinel ferrites: CoFe2O4 vs NiFe2O4. Appl. Phys. Lett. 103, 082406 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of PhysicsUniversity of HyderabadHyderabadIndia

Personalised recommendations