Skip to main content
Log in

Longitudinal Magnetic Field Effects on Thermal Transport of Doped Bilayer Graphene

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We address thermal conductivity of doped biased bilayer graphene for AA-stacking in the context of tight binding model hamiltonian. The effect of magnetic field as its direction is along perpendicular to graphene plane on thermal conductivity has been investigated. Green’s function approach has been implemented to find the behavior of thermal conductivity of bilayer graphene within linear response theory. We have found the chemical potential dependence of thermal conductivity for different values of magnetic field and bias voltage. Also a peak in the dependence of thermal conductivity on magnetic field has been observed. Moreover, in the absence of magnetic field, we find a monotonic decreasing behavior for chemical dependence of thermal conductivity. However, a peak appears in chemical potential dependence of thermal conductivity at nonzero magnetic field. Finally, the behavior of Seebeck coefficient in terms of magnetic field and chemical potential has been studied in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Novoselov, K.S., Geim, A.K., Morosov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. Tangetal, T.T.: Nat. Nanotechnol. 5, 32 (2010)

    Article  ADS  Google Scholar 

  3. Mak, K.F., Lui, C.H., Shan, J., Heinz, T.F.: Phys. Rev. Lett. 102, 256405 (2005)

    Article  ADS  Google Scholar 

  4. Adam, S., Das Sarma, S.: Phys. Rev. B 77, 115436 (2008)

    Article  ADS  Google Scholar 

  5. Liu, Z., Suenaga, K., Harris, P.J.F., Iijima, S.: Phys. Rev. Lett. 102, 015501 (2009)

    Article  ADS  Google Scholar 

  6. Barlas, Y., Yang, K.: Phys. Rev. B 80, 161408(R) (2009)

    Article  ADS  Google Scholar 

  7. Vafek, O., Yamg, K.: Phys. Rev. B 81, 041401(R) (2010)

    Article  ADS  Google Scholar 

  8. Nandkishore, R., Levitiv, L.: Phys. Rev. Lett. 104, 156803 (2010)

    Article  ADS  Google Scholar 

  9. Hwang, E.H., Das Sarma, S.: Phys. Rev. Lett. 101, 156802 (2008)

    Article  ADS  Google Scholar 

  10. McCann, E., Koshino, M.: Rep. Prog. Phys. 76, 056503 (2013)

    Article  ADS  Google Scholar 

  11. McCann, E., Falko, V.I.: Phys. Rev. Lett. 96, 086805 (2006)

    Article  ADS  Google Scholar 

  12. McCann, E.: Phys. Rev. B 74, 161403 (2006)

    Article  ADS  Google Scholar 

  13. Oostinga, J.B., Heersche, H.B., Liu, X., Morpurgo, A.F., Vandersypen, L.M.K.: Nature Mat. Online 10.1,38, nmat 2082 (2007)

    Google Scholar 

  14. Castro, E.V., Novoselov, K.S., Morosov, S.V., Peres, N.M.R., dos Santos, J.M.B.L., Nilsson, J., Guinea, F., Geim, A.K., Neto, A.H.C.: Phys. Rev. Lett. 99, 216802 (2007)

    Article  ADS  Google Scholar 

  15. Min, H., Sahu, B., Banerjee, S.K., MacDonald, A.H.: Phys. Rev. B 75, 155115 (2007)

    Article  ADS  Google Scholar 

  16. Milton Pereira, J.J., Vasilopoulos, P., Peeters, F.M.: Nano Lett. 7, 946 (2007)

    Article  ADS  Google Scholar 

  17. Nilsson, J., Castro Neto, A.H., Guinea, F., Peres, N.M.R.: Phys. Rev. B 76, 165416 (2007)

    Article  ADS  Google Scholar 

  18. Nomura, K., MacDonald, A.H.: Phys. Rev. Lett. 98, 076602 (2007)

    Article  ADS  Google Scholar 

  19. Adam, S., Hwang, E.H., Galitski, V.M., Das Saram, S.: Proc. Natl. Acad. Sci. U. S. A. 104, 18392 (2007)

    Article  ADS  Google Scholar 

  20. Peres, N.M.R., Guinea, F., Castro Neto, H.: Phys. Rev. B 73, 125411 (2006)

    Article  ADS  Google Scholar 

  21. Xu, Y., Li, X., Dong, J.: Nanotechnology 21, 065711 (2010)

    Article  ADS  Google Scholar 

  22. Lobato, I., Partoens, B.: Phys. Rev. B 83, 165429 (2011)

    Article  ADS  Google Scholar 

  23. Mahan, G.D.: Many Particle Physics. Plenumn Press, New York (1993)

    Google Scholar 

  24. Fetter, A.L., Walecka, J.D.: Quantum Theory of Many Particle Systems. MacGraw-Hill, New York (1971)

    Google Scholar 

  25. Paul, I., Kotliar, G.: Phys. Rev. B 67, 115131 (2003)

    Article  ADS  Google Scholar 

  26. Grosso, G., Parravicini, G.P.: Solid State Physics. Academic, Singapour (2000)

    Google Scholar 

  27. Furukawa, S., Ikeda, D., Sakai, K.: J. Phys. Soc. Jpn. 74, 3241 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Rezania.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezania, H., Abdi, M. Longitudinal Magnetic Field Effects on Thermal Transport of Doped Bilayer Graphene. J Supercond Nov Magn 31, 3995–4001 (2018). https://doi.org/10.1007/s10948-018-4675-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4675-y

Keywords

Navigation