Skip to main content
Log in

Quantification of the Interaction Field in Arrays of Magnetic Nanowires from the Remanence Curves

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

A method is presented that allows quantifying the average value of the interaction field in arrays of magnetic nanowires from the field difference between the isothermal remanence (IRM) and the DC demagnetizing (DCD) remanence curves when the normalized magnetization is equal to one third. Arrays of magnetic nanowires of different diameters and packing fractions are used to experimentally test the method. The results have been compared with those obtained using the method based on the difference between the remanence coercivity fields and with a mean-field expression for the interaction field, providing a very good agreement and thus validating the method. Additionally, it is shown that both the position (m0) and the shift along the magnetization axis of the intersection between the remanence curves with respect to the value of one third (δm = m0 − 1/3) provide qualitative information about the interaction field. The former indicates the type of interaction depending if the intersection is above (m0 > 1/3) or below (m0 < 1/3), which corresponds to a ferro or anti-ferro magnetic interaction, respectively. While for the latter, it is shown that the maximum deviation of the Delta-M plot from zero (ΔMmax) corresponds to three times the shift (ΔMmax = 3δm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sander, D., et al.: The 2017 magnetism roadmap. J. Phys. D: Appl. Phys. 50, 363001 (2017)

    Article  Google Scholar 

  2. Fernández-Pacheco, A., Streubel, R., Fruchart, O., Hertel, R., Fischer, P., Cowburn, R.P.: Three-dimensional nanomagnetism. Nat. Commun. 8, 15756 (2017)

    Article  ADS  Google Scholar 

  3. Shi, W., Liang, R., Xu, S., Wang, Y., Luo, C., Darwish, M., Smoukov, S.K.: Layer-by-layer self-assembly: toward magnetic films with tunable anisotropy. J. Phys. Chem. C 119(23), 13215 (2015)

    Article  Google Scholar 

  4. Klughertz, G., Manfredi, G., Hervieux, P.A., Pichon, B.P., Begin-Colin, S.: Effect of disorder and dipolar interactions in two-dimensional assemblies of iron-oxide magnetic nanoparticles. J. Phys. Chem. C 120(13), 7381 (2016)

    Article  Google Scholar 

  5. Okamoto, S., Kikuchi, N., Hotta, A., Furuta, M., Kitakami, O., Shimatsu, T.: Microwave assistance effect on magnetization switching in Co-Cr-Pt granular film. Appl. Phys. Lett. 103(20), 202405 (2013)

    Article  ADS  Google Scholar 

  6. Kumar, D., Chaudhary, S., Pandya, D.K.: Evolution of particle size and interparticle magnetic interactions with thickness in co-sputtered Cu79Co21 nanogranular thin films. J. Appl. Phys. 114(2), 023908 (2013)

    Article  ADS  Google Scholar 

  7. Thevenot, J., Oliveira, H., Sandre, O., Lecommandoux, S.: Magnetic responsive polymer composite materials. Chem. Soc. Rev. 42, 7099 (2013)

    Article  Google Scholar 

  8. Ojha, S., Nunes, W.C., Aimon, N.M., Ross, C.A.: Magnetostatic interactions in self-assembled CoxNi1−xFe2O4/BiFeO3 multiferroic nanocomposites. ACS Nano 10(8), 7657 (2016). PMID: 27434047

    Article  Google Scholar 

  9. Albrecht, T.R., et al.: Bit-patterned magnetic recording: theory, media fabrication, and recording performance. IEEE Trans. Magn. 51, 1 (2015)

    Article  Google Scholar 

  10. Lau, J.W., Shaw, J.M.: Magnetic nanostructures for advanced technologies: fabrication, metrology and challenges. J. Phys. D: Appl. Phys. 44(30), 303001 (2011)

    Article  Google Scholar 

  11. Krawczyk, M., Grundler, D.: Review and prospects of magnonic crystals and devices with reprogrammable band structure. J. Phys. Condens. Matter 26(12), 123202 (2014)

    Article  Google Scholar 

  12. Carignan, L.P., Yelon, A., Menard, D., Caloz, C.: Ferromagnetic nanowire metamaterials: theory and applications. IEEE Trans. Microwave Theory Tech. 59(10), 2568 (2011)

    Article  ADS  Google Scholar 

  13. Schreier, M., Chiba, T., Niedermayr, A., Lotze, J., Huebl, H., Geprägs, S., Takahashi, S., Bauer, G.E.W., Gross, R., Goennenwein, S.T.B.: Current-induced spin torque resonance of a magnetic insulator. Phys. Rev. B 92, 144411 (2015)

    Article  ADS  Google Scholar 

  14. Long, N.V., Yang, Y., Teranishi, T., Thi, C.M., Cao, Y., Nogami, M.: Biomedical applications of advanced multifunctional magnetic nanoparticles. J. Nanosci. Nanotechnol. 15(12), 10091 (2015)

    Article  Google Scholar 

  15. Bjørk, R., Bahl, C.R.H.: Demagnetization factor for a powder of randomly packed spherical particles. Appl. Phys. Lett. 103(10), 102403 (2013)

    Article  ADS  Google Scholar 

  16. Majetich, S.A., Sachan, M.: Magnetostatic interactions in magnetic nanoparticle assemblies: energy, time and length scales. J. Phys. D: Appl. Phys. 39(21), R407 (2006)

    Article  ADS  Google Scholar 

  17. Pardavi-Horvath, M.: Interaction effects in magnetic nanostructures. Phys. Status Solidi A 211(5), 1030 (2014)

    Article  ADS  Google Scholar 

  18. Stamps, R.L., et al.: The 2014 magnetism roadmap. J. Phys. D: Appl. Phys. 47, 333001 (2014)

    Article  ADS  Google Scholar 

  19. Aslibeiki, B., Kameli, P., Salamati, H.: The effect of dipole-dipole interactions on coercivity, anisotropy constant, and blocking temperature of MnFe2O4 nanoparticles. J. Appl. Phys. 119(6), 063901 (2016)

    Article  ADS  Google Scholar 

  20. Pfau, B., Günther, C.M., Guehrs, E., Hauet, T., Hennen, T., Eisebitt, S., Hellwig, O.: Influence of stray fields on the switching-field distribution for bit-patterned media based on pre-patterned substrates. Appl. Phys. Lett. 105(13), 132407 (2014)

    Article  ADS  Google Scholar 

  21. Nisoli, C., Moessner, R., Schiffer, P.: Artificial spin ice: designing and imaging magnetic frustration. Rev. Mod. Phys. 85, 1473 (2013)

    Article  ADS  Google Scholar 

  22. Bedanta, S., Kleemann, W.: Supermagnetism. J. Phys. D: Appl. Phys. 42(1), 013001 (2009)

    Article  ADS  Google Scholar 

  23. Hillion, A., Tamion, A., Tournus, F., Albin, C., Dupuis, V.: From vanishing interaction to superferromagnetic dimerization: experimental determination of interaction lengths for embedded Co clusters. Phys. Rev. B 95, 134446 (2017)

    Article  ADS  Google Scholar 

  24. Landi, G.T.: Role of dipolar interaction in magnetic hyperthermia. Phys. Rev. B 89, 014403 (2014)

    Article  ADS  Google Scholar 

  25. Salas, G., Camarero, J., Cabrera, D., Takacs, H., Varela, M., Ludwig, R., Dähring, H., Hilger, I., Miranda, R., Morales, M.d.P., Teran, F.J.: Modulation of magnetic heating via dipolar magnetic interactions in monodisperse and crystalline iron oxide nanoparticles. J. Phys. Chem. C 118(34), 19985 (2014)

    Article  Google Scholar 

  26. Ruta, S., Chantrell, R., Hovorka, O.: Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles. Sci. Rep. 5, 9090 EP (2015)

    Article  ADS  Google Scholar 

  27. Coral, D.F., Mendoza Zélis, P., Marciello, M., Morales, M.d.P., Craievich, A., Sánchez, F.H., Fernández van Raap, M.B.: Effect of nanoclustering and dipolar interactions in heat generation for magnetic hyperthermia. Langmuir 32(5), 1201 (2016)

    Article  Google Scholar 

  28. Orozco-Henao, J.M., Coral, D.F., Muraca, D., Moscoso-Londoño, O., Mendoza Zélis, P., Fernandez van Raap, M.B., Sharma, S.K., Pirota, K.R., Knobel, M.: Effects of nanostructure and dipolar interactions on magnetohyperthermia in iron oxide nanoparticles. J. Phys. Chem. C 120(23), 12796 (2016)

    Article  Google Scholar 

  29. Henkel, O.: Remanenzverhalten und wechselwirkungen in hartmagnetischen teilchenkollektiven. Phys. Status Solidi B 7(3), 919 (1964)

    Article  ADS  Google Scholar 

  30. Kelly, P.E., O’Grady, K., Mayo, P.I., Chantrell, R.W.: Switching mechanisms in cobalt-phosphorus thin films. IEEE Trans. Magn. 25(5), 3881 (1989)

    Article  ADS  Google Scholar 

  31. Veitch, R.J.: Anhysteretic susceptibility and static magnetic properties of interacting small particles. IEEE Trans. Magn. 26(5), 1876 (1990)

    Article  ADS  Google Scholar 

  32. Harrell, J.W., Richards, D., Parker, M.R.: Delta-h plot evaluation of remanence behavior in barium ferrite tapes and disks. J. Appl. Phys. 73(10), 6722 (1993)

    Article  ADS  Google Scholar 

  33. Béron, F., Clime, L., Ciureanu, M., Ménard, D., Cochrane, R.W., Yelon, A.: Magnetostatic interactions and coercivities of ferromagnetic soft nanowires in uniform length arrays. J. Nanosci. Nanotechnol. 8 (6), 2944 (2008)

    Article  Google Scholar 

  34. Béron, F., Ménard, D., Yelon, A.: First-order reversal curve diagrams of magnetic entities with mean interaction field: a physical analysis perspective. J. Appl. Phys. 103(7), 07D908 (2008)

    Article  Google Scholar 

  35. Stancu, A., Pike, C., Stoleriu, L., Postolache, P., Cimpoesu, D.: Micromagnetic and preisach analysis of the first order reversal curves (forc) diagram. J. Appl. Phys. 93(10), 6620 (2003)

    Article  ADS  Google Scholar 

  36. Dobrotă, C.I., Stancu, A.: What does a first-order reversal curve diagram really mean? a study case: array of ferromagnetic nanowires. J. Appl. Phys. 113(4), 043928 (2013)

    Article  ADS  Google Scholar 

  37. Gilbert, D.A., Zimanyi, G.T., Dumas, R.K., Winklhofer, M., Gomez, A., Eibagi, N., Vicent, J.L., Liu, K.: Quantitative decoding of interactions in tunable nanomagnet arrays using first order reversal curves. Sci. Rep. 4, 4204 EP (2014)

    Article  ADS  Google Scholar 

  38. Wang, T., Wang, Y., Fu, Y., Hasegawa, T., Oshima, H., Itoh, K., Nishio, K., Masuda, H., Li, F.S., Saito, H., Ishio, S.: Magnetic behavior in an ordered Co nanorod array. Nanotechnology 19(45), 455703 (2008)

    Article  ADS  Google Scholar 

  39. Encinas-Oropesa, A., Demand, M., Piraux, L., Huynen, I., Ebels, U.: Dipolar interactions in arrays of nickel nanowires studied by ferromagnetic resonance. Phys. Rev. B 63, 104415 (2001)

    Article  ADS  Google Scholar 

  40. De La Torre Medina, J., Piraux, L., Olais Govea, J.M., Encinas, A.: Double ferromagnetic resonance and configuration-dependent dipolar coupling in unsaturated arrays of bistable magnetic nanowires. Phys. Rev. B 81, 144411 (2010)

    Article  ADS  Google Scholar 

  41. Moya, C., Iglesias, Ó., Batlle, X., Labarta, A.: Quantification of dipolar interactions in Fe3−xO4 nanoparticles. J. Phys. Chem. C 119(42), 24142 (2015)

    Article  Google Scholar 

  42. Dupuis, V., Khadra, G., Hillion, A., Tamion, A., Tuaillon-Combes, J., Bardotti, L., Tournus, F.: Intrinsic magnetic properties of bimetallic nanoparticles elaborated by cluster beam deposition. Phys. Chem. Chem. Phys. 17, 27996 (2015)

    Article  Google Scholar 

  43. Blanco-Andujar, C., Ortega, D., Southern, P., Pankhurst, Q.A., Thanh, N.T.K.: High performance multi-core iron oxide nanoparticles for magnetic hyperthermia: microwave synthesis, and the role of core-to-core interactions. Nanoscale 7, 1768 (2015)

    Article  ADS  Google Scholar 

  44. Panagiotopoulos, I., Fang, W., Aït-Atmane, K., Piquemal, J.Y., Viau, G., Dalmas, F., Boué, F., Ott, F.: Low dipolar interactions in dense aggregates of aligned magnetic nanowires. J. Appl. Phys. 114(23), 233909 (2013)

    Article  ADS  Google Scholar 

  45. Corradi, A.R., Wohlfarth, E.P.: Influence of densification on the remanence, the coercivities and the interaction field of elongated γ Fe2O3 powders. IEEE Trans. Magn. 14, 861 (1978)

    Article  ADS  Google Scholar 

  46. Álvarez, N., Leva, E., Valente, R., Mansilla, M., Gómez, J., Milano, J., Butera, A.: Correlation between magnetic interactions and domain structure in A1 FePt ferromagnetic thin films. J. Appl. Phys. 115, 083907 (2014)

    Article  ADS  Google Scholar 

  47. Martínez-Huerta, J.M., Medina, J.D.L.T., Piraux, L., Encinas, A.: Self consistent measurement and removal of the dipolar interaction field in magnetic particle assemblies and the determination of their intrinsic switching field distribution. J. Appl. Phys. 111(8), 083914 (2012)

    Article  ADS  Google Scholar 

  48. Piraux, L., Encinas, A., Vila, L., Mátéfi-Tempfli, S., Mátéfi-Tempfli, M., Darques, M., Elhoussine, F., Michotte, S.: Magnetic and superconducting nanowires. J. Nanosci. Nanotechnol. 5(3), 372 (2005)

    Article  Google Scholar 

  49. Wohlfarth, E.P.: Relations between different modes of acquisition of the remanent magnetization of ferromagnetic particles. J. Appl. Phys. 29(3), 595 (1958)

    Article  ADS  Google Scholar 

  50. Tournus, F., Tamion, A., Hillion, A., Dupuis, V.: Anisotropy evolution of nanoparticles under annealing: benefits of isothermal remanent magnetization simulation. J. Magn. Magn. Mater. 419, 1 (2016)

    Article  ADS  Google Scholar 

  51. Peddis, D., Cannas, C., Piccaluga, G., Agostinelli, E., Fiorani, D.: Spin-glass-like freezing and enhanced magnetization in ultra-small CoFe2O4 nanoparticles. Nanotechnology 21, 125705 (2010)

    Article  ADS  Google Scholar 

  52. Martínez-Huerta, J.M., Medina, J.D.L.T., Piraux, L., Encinas, A.: Configuration dependent demagnetizing field in assemblies of interacting magnetic particles. J. Phys. Condens. Matter 25(22), 226003 (2013)

    Article  ADS  Google Scholar 

  53. Skomski, R.: Nanomagnetics. J. Phys. Condens. Matter 15(20), R841 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank E. Ferain of it4ip S. A. for providing the PC membranes. E. Araujo thanks Fondo CONACYT- Secretaría de Energía - Sustentabilidad Energética.

Funding

This study received financial support from CONACYT Ciencia Básica grant 286626 and CONACYT-SENER I0027-2015-01-232611, and Fédération Wallonie-Bruxelles (ARC 13/18-052, Supracryst) and Fonds de la Recherche Scientifique-FNRS under grant no. T.0006.16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando Encinas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araujo, E., Martínez-Huerta, J.M., Piraux, L. et al. Quantification of the Interaction Field in Arrays of Magnetic Nanowires from the Remanence Curves. J Supercond Nov Magn 31, 3981–3987 (2018). https://doi.org/10.1007/s10948-018-4671-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4671-2

Keywords

Navigation