Insight into Phase Transition, Electronic, Magnetic, Mechanical, and Thermodynamic Properties of TbTe: a DFT Investigation
- 7 Downloads
Abstract
Theoretical investigation on TbTe for its structural, electronic, magnetic, and thermodynamic stuffs has been carried within density functional theory (DFT) as implemented in WIEN2K code. TbTe was found stable in ferromagnetic phase. The calculated ground-state parameters were found in a good agreement with the experimental data. The compound was found to have a structural stability in cubic B1 (NaCl-type structure) phase, but under the application of high pressure (at 27 GPa), it undergone to B2 (CsCl-type structure) phase of pressure. The second-order elastic constants and mechanical properties like Young’s modulus, Shear modulus, Poisson ratio, Cauchy pressure (C12–C44), and Pugh’s ratio (B/G) were calculated. The present calculations confirmed the ductile nature of TbTe. Further, the thermodynamic investigations have been carried using quasi-harmonic Debye approximation. We have calculated the pressure and temperature dependence of Debye temperature (𝜃D), bulk modulus (B), thermal expansion (α), heat capacities (CV), and entropy (S) in the temperature range of 0 to 1000 K and pressure range of 0 to 25 GPa.
Keywords
TbTe Electronic structure Magnetic properties Mechanical properties Phase transition ThermodynamicsReferences
- 1.Horne, M., Strange, P., Temmerman, W.M., Szotek, Z., Svane, A., Winter, H.: J. Phys. Condens. Matter 16, 5061 (2004)ADSCrossRefGoogle Scholar
- 2.Butcher, E., Andres, K., Disalvo, F.J., Maita, J.P., Gossard, A.C., Cooper, A.S., Hull, G.W.: Phys. Rev. B 11, 500 (1975)ADSCrossRefGoogle Scholar
- 3.Eilling, A., Schiling, J.S., Bach, H.: In: J.S. Schiling, R.N. Shelton (eds.) North Holland, New York, pp. 385–396 (1981)Google Scholar
- 4.Westerhold, K., Bach, H., Wendemuth, R., Methfessel, S.: Solid State Comm. 31, 961 (1979)ADSCrossRefGoogle Scholar
- 5.Wachter, P.: Handbook on the physics and chemistry of rare earths, vol. 19 chapter 132 (1994)Google Scholar
- 6.Jayaraman, A., Narayanamurthi, V., Bucher, E., Maines, R.G.: Phys. Rev. Lett. 25, 1430 (1970)ADSCrossRefGoogle Scholar
- 7.Varma, C.M.: Rev. Mod. Phys. 48, 219 (1976)ADSCrossRefGoogle Scholar
- 8.Varma, C.M., Heine, V.: Phys. Rev. B 11, 4763 (1975)ADSCrossRefGoogle Scholar
- 9.Vaitheeswaran, G., Kanchana, V., Heathman, S., Idiri, M., LeBihan, T., Svane, A., Delin, A., Johansson, B.: Phys. Rev. B 75, 184108 (2007)ADSCrossRefGoogle Scholar
- 10.Nakanishi, Y., Sakon, T., Motokawa, M., Suzuki, T., Yoshizawa, M.: Phys. Rev. B 69, 144427 (2003)ADSCrossRefGoogle Scholar
- 11.Gordienko, S.P.: Powder Metallurgy and Metal Ceramics 40, 58 (2001)CrossRefGoogle Scholar
- 12.Srivastava, V., Bhanjakar, S., Sanyal, S.P.: Physica B 406, 2158 (2011)ADSCrossRefGoogle Scholar
- 13.Al-Qaisi, S., Abu-Jafar, M.S., Gopir, G.K., Khenata, R.: Phase Transit. 89, 1155 (2016)CrossRefGoogle Scholar
- 14.Petit, L., Szotek, Z., Luders, M., Temmerman, W.M., Svana, A.: Phys. Rev. B 90, 035110 (2014)ADSCrossRefGoogle Scholar
- 15.Hasni, L., Ameri, M., Bensaid, D., Ameri, I., Mesbah, S., Al-Douri, Y., Coutinho, J.: J. Sup. Cond. Novl. Magnetism 30, 341 (2017)Google Scholar
- 16.Wu, Z., Cohen, R.E.: Phys. Rev. B 73, 235116 (2006)ADSCrossRefGoogle Scholar
- 17.Blaha, P., Schwarz, K., Madsen, G.K.H., Kuasnicke, D., Luitz, J.: Introduction to WIEN2K, an Augmented Plane Wane plus Local Orbitals Program for Calculating Crystal Properties. Vienna University of Technology, Vienna, Austria (2001)Google Scholar
- 18.Schwarz, K., Blaha, P., Madsen, G.K.H.: Comp. Phys. Commun. 147, 71 (2002)ADSCrossRefGoogle Scholar
- 19.Hedin, L., Lundqvist, B.I.: J. Phys. C 4, 2064 (1971)ADSCrossRefGoogle Scholar
- 20.Birch, F.: J. Appl. Phys. 9, 279 (1938)ADSCrossRefGoogle Scholar
- 21.de-la- Roza, O., Abbasi-Perez, D., Luaea, V.: Comput. Phys. Commun. 182, 2232 (2011)ADSCrossRefGoogle Scholar
- 22.Dar, S.A., Srivastava, V., Sakalle, U.K.: Mater. Res. Express 4, 086304 (2017)ADSCrossRefGoogle Scholar
- 23.Dar, S.A., Srivastava, V., Sakalle, U.K.: J. Supercond. Nov. Magn. 30, 3055 (2017)CrossRefGoogle Scholar
- 24.Hulliger, F., Stucki, F.: J. Physik B 31, 391 (1978)ADSCrossRefGoogle Scholar
- 25.Sinko, G.V., Smirnov, N.: J. Phys. Condens. Matter 14, 6989 (2002)ADSCrossRefGoogle Scholar
- 26.Dar, S.A., Srivastava, V., Sakalle, U.K.: J. Electron. Mater. 46, 6870 (2017)ADSCrossRefGoogle Scholar
- 27.Voigt, W.: Lehrbush der Kristallphysik. Taubner, Leipzig (1928)Google Scholar
- 28.Mehl, M.J., Klein, B.K., Papaconstantopoulos, D.A. In: Westbrook, J. H., Fleischeir, R. L. (eds.) : Intermetallic compounds: principle and practice. Wiley, New York (1995)Google Scholar
- 29.Schreiber, E., Anderson, O.L., Soga, N.: Elastic Constants and Measurements. McGraw–Hill, New York (1973)Google Scholar
- 30.Hill, R.: Proc. Phys. Soc. London 65, 349 (1952)ADSCrossRefGoogle Scholar
- 31.Pugh, S.F.: Philos. Mag. 45, 823 (1954)CrossRefGoogle Scholar
- 32.Dar, S.A., Srivastava, V., Sakalle, U.K., Parey, V., Pagare, G.: Mater. Res. Express 4, 106104 (2017)ADSCrossRefGoogle Scholar
- 33.Haines, J., Leger, J.M., Bocquillon, G.: Annu. Rev. Mater. Sci. 31, 1 (2001)ADSCrossRefGoogle Scholar
- 34.Dar, S.A., Khandy, S.A., Islam, I., Gupta, D.C., Sakalle, U.K., Srivastava, V., Parrey, K.: Chin. J. Phys. 55, 1769 (2017)CrossRefGoogle Scholar
- 35.Petit, A.T., Dulong, P.L.: Ann. Chim. Phys. 10, 395 (1819)Google Scholar