Advertisement

Thickness-Dependent Thermal Oxidation of Ni into NiO Thin Films

  • Patta Ravikumar
  • Dolly Taparia
  • Perumal Alagarsamy
Original Paper

Abstract

We report thickness-dependent thermal oxidation in Ni (t = 10–300 nm) thin films exposed to air annealing and the resulting vibrational, magnetic and electrical properties of Ni films deposited directly on thermally oxidized Si substrate using magnetron sputtering technique at ambient temperature. As-deposited Ni films exhibit face-centred cubic structure with fine crystals and large lattice constant (aNi) at lower t (< 50 nm). With increasing t, aNi decreases and approaches to bulk value. With increasing T A , aNi not only decreases to bulk Ni due to improved crystallization but also reduces below bulk Ni for t > 50 due to formation of NiO. The relative fraction of Ni and NiO in annealed films up to 400 C strongly depends on t. Annealing Ni films at 500 C results into complete oxidation of Ni into granular-type NiO. X-ray reflectivity studies reveal that oxidation process occurs from surface of the films converting Ni into NiO possibly through layer by layer process, which is subtle to t. Raman spectra show that intensity ratio between one-phonon longitudinal optical (LO) and two-phonon LO bands decreases and intensity of two-magnon band increases with increasing t for films annealed at particular T A . This confirms the growth of NiO not only with increasing T A , but also with t. As-deposited films exhibit ferromagnetism at room temperature. The presence of Ni and NiO in annealed films implies coexistence of ferromagnetic and antiferromagnetic interactions, leading to tunable exchange bias (H E ), whose magnitude strongly depends on the ratio between Ni and NiO. Electrical resistance (R) of the as-deposited Ni films decreases with increasing t and follows the Namba’s model. Upon annealing, R increases largely due to oxidation of Ni. The observed results are explained on the basis of thickness dependent thermal oxidation process with increasing T A .

Keywords

Films Electrical properties Magnetic properties Surfaces 

Notes

Acknowledgements

This work was financially supported by the Council of Scientific and Industrial Research through a research project [03(1166)/10/EMR-II]. Infrastructure facilities provided by Department of Science and Technology, New Delhi [SR/S2/CMP-19/2006, SR/FST/PII-020/2009], are gratefully acknowledged.

References

  1. 1.
    Gao, J.H., Girard, Y., Repain, V., Tejeda, A., Belkhou, R., Rougemaille, N., Chacon, C., Rodary, G., Rousset, S.: Spin reorientation transition and magnetic domain structure of Co ultrathin films grown on a faceted Au(455) surface. Phys. Rev. B 77, 134429 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Liu, H.L., Skeren, T., Volodin, A., Temst, K., Vantomee, A., Haesendonck, C.V.: Tailoring the magnetic anisotropy, magnetization reversal, and anisotropic magnetoresistance of Ni films by ion sputtering. Phys. Rev. B 91, 104403 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    Ravikumar, P., Kisan, B., Perumal, A.: Thickness dependent ferromagnetism in thermally decomposed NiO thin films. J. Magn. Magn. Mater. 418, 86 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    He, L., Zhi, M.L., Han, C.W., Xiao-Xue, T., Xu, D.S., Graham, L.W.C., Georg, S.D., Shvets, I.V., Da-Peng, Y.: Memory and threshold resistance switching in Ni/NiO core-shell nanowires. Nano Lett. 11, 4601 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Samardak, A.S., Sukovatitsina, E.V., Ognev, A.V., Chebotkevich, L.A., Mahmoodi, R., Peighambari, S.M., Hosseini, M.G., Nasirpouri, F.: High-density nickel nanowire arrays for data storage applications. J. Phys.: Conf. Ser. 345, 012011 (2012)Google Scholar
  6. 6.
    Sean, M.O., Jessamyn, A.F., Allen, T.B., Sunghun, L., James, G.C., Laura, B.R., John, J.B., Patrick, M.V.: Quantum point contacts and resistive switching in Ni/NiO nanowire junctions. Appl. Phys. Lett. 109, 203101 (2016)CrossRefGoogle Scholar
  7. 7.
    Xiao, W., Song, W., Herng, T.S., Qin, Q., Yang, Y., Zheng, M., Hong, X., Feng, Y.P., Ding, J.: Novel room-temperature spin- valve-like magnetoresistance in magnetically coupled nano-column Fe3O4/Ni heterostructure. J. Nanoscale 8, 15737 (2016)CrossRefGoogle Scholar
  8. 8.
    Fert, A., Guntherodt, G., Heinrich, B., Marinero, E.E., Maurer, M.: Magnetic Thin Films, Multilayers and Superlattices. Elsevier Science Publishers, North-Holland (1991)Google Scholar
  9. 9.
    Tamura, K., Endo, H.: Ferromagnetic properties of amorphous Ni. Phys. Lett. 29A, 52 (1969)ADSCrossRefGoogle Scholar
  10. 10.
    Snigirev, O.V., Andreev, E., Tishin, A.M., Gudoshnikov, S.A., Bohr, J.: Magnetic properties of thin Ni films measured by a dc SQUID-based magnetic microscope. Phys. Rev. B 21, 55 (1997)Google Scholar
  11. 11.
    Yoo, T., Nasir, A.R., Bac, S.K., Lee, S., Choi, S., Lee, S., Liu, X., Furdyna, J.K.: Magnetic properties of Ni films deposited on MBE grown Bi2Se3 layers. AIP advances 7, 055819 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Jundwirth, T., Sinova, J., Masek, J., Kucera, J., MacDeonald, A.H.: Theory of ferromagnetic (III, Mn)V semiconductors. Rev. Mod. Phys. 78, 809 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Shang, T., Zhan, Q.F., Yang, H.L., Zuo, Z.H., Xie, Y.L., Liu, L.P., Zhang, S.L., Zhang, Y., Li, H.H., Wang, B.M., Wu, Y.H., Zhang, S., Li, R.W.: Effect of NiO inserted layer on spin-Hall magnetoresistance in pt/nio/YIG heterostructures. Appl. Phys. Lett. 109, 032410 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Wang, J., Wei, X., Wangyang, P.: Gas-sensing devices based on Zn-doped NiO two-dimensional grainy films with fast response and recovery for ammonia molecule detection. Nano scale Res. Lett. 10, 461 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Chan, I.M., Hsu, T.Y., Hong, F.C.: Enhanced hole injections in organic light-emitting devices by depositing nickel oxide on indium tin oxide anode. Appl. Phys. Lett. 81, 1899 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Liu, Y., Xu, L., Zhao, C., Shao, M., Hu, B.: Tuning the Seebeck effect in C60-based hybrid thermoelectric devices through temperature-dependent surface polarization and thermally-modulated interface dipoles. Phys. Chem. Chem. Phys. 19, 14793 (2017)CrossRefGoogle Scholar
  17. 17.
    Cai, G., Wang, J., Lee, P.S.: Next-generation multifunctional electrochromic devices. Acc. Chem. Res. 49, 1469 (2016)CrossRefGoogle Scholar
  18. 18.
    Dormann, J.L., Fiorani, D., Tronc, E.: Magnetic relaxation in fine-particle systems. Adv. Chem. Phys. 98, 283 (1997)Google Scholar
  19. 19.
    Fiorani, D.: Surface effects in magnetic nanoparticles, New York, XIV USA: Springer 300 (2005)Google Scholar
  20. 20.
    Ravikumar, P., Kisan, B., Perumal, A.: Enhanced room temperature ferromagnetism in antiferromagnetic NiO nanoparticles. AIP Adv. 5, 087116 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Wruck, D.A., Dixon, M.A., Rubin, M., Bogy, S.N.: As-sputtered electrochromic films of nickel oxide. J. Vac. Sci. Technol. A 9, 2170 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    Valladares, L.D.L.S., Ionescu, A., Holmes, S., Barnes, C.H.W., Domínguez, A.B., Quispe, O.A., González, J. C., Milana, S., Barbone, M., Ferrari, A.C., Ramos, H., Majima, Y.: Characterization of Ni thin films following thermal oxidation in air. J. Vac. Sci. Tech. 32, 051808 (2014)CrossRefGoogle Scholar
  23. 23.
    Torrsi, S.I.C., Gabrielli, C., Goff, A.H., Torresi, R.: Electrochromic behavior of nickel oxide electrodes: I. I.entification of the Colored State Using Quartz Crystal Microbalance. J. Electrochem. Soc. 138, 1548 (1991)CrossRefGoogle Scholar
  24. 24.
    Fujii, E., Tomozawa, A, Fujii, S., Torii, H., Hattori, M., Takayama, R.: NaCl-type oxide films prepared by plasma-enhanced metalorganic chemical vapor deposition. Jpn. J. Appl. Phys. Part 2 32, L1448 (1993)CrossRefGoogle Scholar
  25. 25.
    Lierop, J.V., Lewis, L.H., Williams, K.E., Gambino, R.J.: Magnetic exchange effects in a nanocomposite Ni/NiO film. J. Appl. Phys. 91, 7233 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    Wang, L., Wang, Z., Cao, Y.: Preparation of Nickel oxide films by sol-gel process. J. Ceram. Soc. Jpn. 101, 227 (1993)CrossRefGoogle Scholar
  27. 27.
    Aparna, R., Srinivas, V.V., Ram, S., De Toro, J.A., Riveiro, J.M.: Effect of interstitial oxygen on the crystal structure and magnetic properties of Ni nanoparticles. J. Appl. Phys. 96, 6782 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    Adler, D., Feinleib, J.: Electrical and optical properties of narrow-band materials. Phys. Rev. B 2, 3112 (1970)ADSCrossRefGoogle Scholar
  29. 29.
    Kai, H.Y.: Nanocrystalline materials, a study on their preparation and characterization, Ph.D. Thesis, University of Amsterdam (1993)Google Scholar
  30. 30.
    Goux, L., Lisoni, J.G., Jurczak, M., Wouters, D.J., Courtade, L., Muller, C.: Coexistence of the bipolar and unipolar resistive-switching modes in NiO cells made by thermal oxidation of Ni layers. J. Appl. Phys. 107, 024512 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Pinnel, M.R., Tompkins, H.G., Heath, D.E.: Oxidation of nickel and nickel-gold alloys in air at 50–150 C. J. Electrochem. Soc. 126(7), 1274 (1979)CrossRefGoogle Scholar
  32. 32.
    Hotovy, I., Huran, J., Spiess, L.: Characterization of sputtered NiO films using XRD and AFM. J. Mater. Sci. 39, 2609 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    Tao, D., Wei, F.: New procedure towards size-homogeneous and well-dispersed nickel oxide nanoparticles of 30 nm. Mater. Lett. 58, 3226 (2004)CrossRefGoogle Scholar
  34. 34.
    Kisan, B., Shyni, P.C., Layek, S., Verma, H.C., Hesp, D., Dhanak, V., Krishnamurthy, S., Perumal, A.: Finite size effects in magnetic and optical properties of antiferromagnetic NiO nanoparticles. IEEE Trans. Magn. 50, 2300704 (2014)CrossRefGoogle Scholar
  35. 35.
    Padhan, A.M., Sathish, M., Saravanan, P., Perumal, A.: Mechanical activation on aluminothermic reduction and magnetic properties of NiO powders. J. Phys. D: Appl. Phys. 50, 21LT01 (2017)CrossRefGoogle Scholar
  36. 36.
    Abdel-Karim, R.: Electrodeposition of composite materials. In: Mohamed, A.M.A., Golden, T.D. (eds.) INTECH open science, ISBN: 978-953-51-2270-8,  https://doi.org/10.5772/62189
  37. 37.
    Dragos, O., Chiriac, H., Lupu, N., Grigoras, M., Tabakovic, I.: Composition gradient in electrodeposition of thin CoPt films from the quiescent hexachloroplatinate solutions. J. Electrochem. Soc. 163, D83 (2016)CrossRefGoogle Scholar
  38. 38.
    Min, K.C., Kim, M., You, Y.H., Lee, S.S., Lee, Y., Chung, T.M., Kim, C.G., Hwang, J.H., An, K.S., Lee, N.S., Kim, Y.: Nio thin films by MOCVD of Ni(dmamb)2 and their resistance switching phenomena. Surf. Coatings Tech. 201, 9252 (2007)CrossRefGoogle Scholar
  39. 39.
    Andersson, S., Dzhavadov, L.: Thermal conductivity and heat capacity of amorphous SiO2: pressure and volume dependence. J. Phys.: Condens. Matter 4, 6209 (1992)ADSGoogle Scholar
  40. 40.
    Haynes, W.M.: CRC Handbook of Chemistry and Physics, 93rd edn. CRC, Taylor and Francis Group, Florida (2012)Google Scholar
  41. 41.
    Ulmane, N.M., Kuzmin, A., Steins, I., Grabis, J., Sildos, I., Pärs, M.: Raman scattering in nanosized nickel oxide NiO. J. Phys. Conf. series 93, 012039 (2007)CrossRefGoogle Scholar
  42. 42.
    Gandhi, A.C., Huang, C.Y., Yang, C.C., Chan, T.S., Cheng, C.L., Ma, Y.R., Wu, S.Y.: Growth mechanism and magnon excitation in NiO nanowalls. Nanoscale Res. Lett. 6, 485 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    Ulmane, N.M., Kuzmin, A., Grabis, J., Sildos, I., Voronin, V.I., Berger, I.F., Kazantsev, V.A.: Structural and magnetic properties of nickel oxide nanopowders. Sol. State Phenomena 168, 341 (2011)Google Scholar
  44. 44.
    Duan, W.J., Lu, S.H., Wu, Z.L., Wang, Y.S.: Size effects on properties of NiO nanoparticles grown in alkali salts. J. Phys. Chem. C 116, 26043 (2012)CrossRefGoogle Scholar
  45. 45.
    Gandhi, A.C., Pant, J., Pandit, S.D., Dalimbkar, S.K., Chan, T.S., Cheng, C.L., Ma, Y.R., Wu, S.Y.: Short-range magnon excitation in NiO nanoparticles. J. Phys. Chem. C 117, 18666 (2013)CrossRefGoogle Scholar
  46. 46.
    Cazzanelli, E., Kuzmin, A., Mariotto, G., Ulmane, N.M.: Study of vibrational and magnetic excitations in nicmg1−CO solid solutions by Raman spectroscopy. J. Phys. Condens. Matter. 15, 2045 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    Yang, C.C., Li, S.: Size-dependent Raman red shifts of semiconductor nanocrystals. J. Phys. Chem. B 112, 14193 (2008)CrossRefGoogle Scholar
  48. 48.
    Keemenovic, A., Antic, B., Vucinic-vasic, M., Colomban, P., Jovalekic, C., Bibic, N., Kahlenberg, V., Leoni, M.: Temperature-induced structure and microstructure evolution of nanostructured Ni0.9Zn0.1O. J. Appl. Crystallography 43, 699 (2010)CrossRefGoogle Scholar
  49. 49.
    Cao, D., Jin, C., Pan, L., Wang, J., Liu, Q.: IEEE International Magnetics Conference (INTERMAG-2015), CQ-07Google Scholar
  50. 50.
    Hemmous, M., Layadi, A., Kerkache, L., Tiercelin, N., Preobrazhensky, V., Pernod, P.: Magnetic properties of evaporated Ni thin films: effect of substrates, thickness, and Cu underlayer. Metall. Mater. Trans. A 46(9), 4143 (2015)CrossRefGoogle Scholar
  51. 51.
    Nacereddine, C., Layadi, A., Guittoum, A., Cherif, S.M., Chauveau, T., Billet, D., Youssef, J.B., Bourzami, A., Bourahli, M.H.: Structural, electrical and magnetic properties of evaporated Ni/Cu and Ni/glass thin films. Mater. Sci. Eng. B 136, 197 (2007)CrossRefGoogle Scholar
  52. 52.
    Rumpf, K., Granitzer, P., Polt, P., Reichmann, A., Krenn, H.: Fabrication and optical properties of a self-organized ferromagnetic Ni/Si-nanocomposite. J. Magn. Magn. Mater. 316, 114 (2007)ADSCrossRefGoogle Scholar
  53. 53.
    Ching, W.Y., Song, L.W., Jaswal, S.S.: Calculation of electron states in Cux Zr1−x glasses by the orthogonalized linear combination of atomic orbitals method. Phys. Rev. B 30, 544 (1984)ADSCrossRefGoogle Scholar
  54. 54.
    Yi, J.B., Zhou, Y.Z., Ding, J., Chow, G.M., Dong, Z.L., White, T., Gao, X.Y., Wee, A.T.S., Yu, X.J.: An investigation of structure, magnetic properties and magnetoresistance of Ni films prepared by sputtering. J. Magn. Magn. Mater. 284, 303 (2004)ADSCrossRefGoogle Scholar
  55. 55.
    Zhang, R., Willis, R.F.: Thickness-dependent Curie temperatures of ultrathin magnetic films: effect of the range of spin-spin interactions. Phys. Rev. Lett. 86, 2665 (2001)ADSCrossRefGoogle Scholar
  56. 56.
    Baberschke, K.: The magnetism of nickel monolayers. Appl. Phys. A 62, 417 (1996)ADSCrossRefGoogle Scholar
  57. 57.
    Galkina, O.S., Chernikova, L.A., Chang, K.T., Kondorskii, E.I.: Electrical properties of thin nickel films at low temperatures. Sov. Phys. JETP 14, 1254 (1962)Google Scholar
  58. 58.
    Ligot, J., Benayoun, S., Hantzpergue, J.: Characterization and modeling of electrical resistivity of sputtered tungsten films. J. Vac. Sci. Tech. 19, 798 (2001)ADSCrossRefGoogle Scholar
  59. 59.
    Liu, H.D., Zhao, Y.P., Ramanath, G., Murarka, S.P., Wang, G.C.: Thickness dependent electrical resistivity of ultrathin (40 nm) Cu films. Thin Solid Films 384, 151 (2001)ADSCrossRefGoogle Scholar
  60. 60.
    Namba, Y.: Resistivity and temperature coefficient of thin metal films with rough surface. Jpn. J. Appl. Phys. 9, 1326 (1970)ADSCrossRefGoogle Scholar
  61. 61.
    Fuchs, K.: The conductivity of thin metallic films according to the electron theory of metals. Proc. Cambridge Philos. Soc. 34, 100 (1938)ADSCrossRefGoogle Scholar
  62. 62.
    Sondheimer, E.H.: The mean free path of electrons in metals. Adv. Phys. 1, 1 (1952)ADSCrossRefzbMATHGoogle Scholar
  63. 63.
    Morin, F.J.: Electrical properties of NiO. Phys. Rev. 93, 1199 (1954)ADSCrossRefGoogle Scholar
  64. 64.
    Varkey, A.J., Fort, A.F.: Solution growth technique for deposition of nickel oxide thin films. Thin Solid Films 235, 47 (1993)ADSCrossRefGoogle Scholar
  65. 65.
    Pejova, B., Kocareva, T., Najdoski, M., Grozdanov, I.: A solution growth route to nanocrystalline nickel oxide thin films. Appl. Surf. Sci. 165, 271 (2000)ADSCrossRefGoogle Scholar
  66. 66.
    Venter, A., Botha, J.R.: Optical and electrical properties of NiO for possible dielectric applications. S. Afr. J. Sci. 107(1/2), 268 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsIndian institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations