Heat Capacity and Mössbauer Study of Self-Flux Grown FeTe Single Crystal

  • P. K. Maheshwari
  • V. Raghavendra Reddy
  • V. P. S. Awana


We report mainly the heat capacity and Mössbauer study of self-flux grown FeTe single crystal, which is a ground state compound of the Fe chalcogenides superconducting series i.e. FeTe1−x(Se/S) x The as grown FeTe single crystal is large enough to the tune of a few centimetres and the same crystallizes in tetragonal structure having space group of P4/nmm. FeTe shows the structural/magnetic phase transition at 70 K in both magnetic and resistivity measurements. Heat capacity measurement also confirms the coupled structural/magnetic transition at the same temperature. The Debye model fitting of low temperature (below 70 K) heat capacity exhibited Debye temperature (𝜃 D ) to be 324 K. Mössbauer spectra are performed at 300 and 5 K. The 300-K spectra showed two paramagnetic doublets and the 5-K spectra exhibited hyperfine magnetic sextet with an average hyperfine field of 10.6 Tesla matching with the results of Yoshikazu Mizuguchi et al.


Iron-based superconductors FeTe crystal growth Heat capacity Mössbauer spectroscopy 



Authors would like to thank the director of NPL-CSIR India for his intense interest in the present work.

Funding Information

This research work is financially supported by the DAESRC outstanding investigator award scheme on search for new superconductors. P.K. Maheshwari also thanks CSIR, India for his research fellowship and AcSIR-NPL for his Ph.D. registration


  1. 1.
    Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: J. Am. Chem. Soc. 130, 3296 (2008)CrossRefGoogle Scholar
  2. 2.
    Chen, X.H., Wu, T., Wu, G., Liu, R.H., Chen, H., Fang, D.F.: Nature 453, 761 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Hsu, F.C., Luo, J.Y., Yeh, K.W., Chen, T.K., Huang, T.W., Wu, P.M., Lee, Y.C., Huang, Y.L., Chu, Y.Y., Yan, D.C., Wu, M.K.: PNAS 105, 14262 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Yeh, K.W., Huang, T.W., Huang, Y.L., Chen, T.K., Hsu, F.C., Wu, P.M., Lee, Y.C., Chu, Y.Y., Chen, C.L., Luo, J.Y.: Euro. Phys. Lett. 84, 37002 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Zhi-An, R., Lu, W., Jie, Y., Wei, Y., Xiao-Li, S., Zheng-Cai, Guang-Can, C., Xiao-Li, D., Li-Ling, S., Fang, Z., Zhong-Xian, Z.: Chin. Phys. Lett. 25, 2215 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Bednorz, J.G., Muller, K.A.: Z. Physik B 64, 189 (1986)ADSCrossRefGoogle Scholar
  7. 7.
    Wu, M.K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J., Wang, Y.Q., Chu, C.W.: Phys. Rev. Lett. 58, 908 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    Li, S., de la Cruz, C., Huang, Q., Chen, Y., Lynn, J.W., Hu, J., Huang, Y.-L., Hsu, F.-C., Yeh, K.-W., Wu, M.-K., Dai, P.: Phys. Rev. B 79, 054503 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Fang, M.H., Pham, H.M., Qian, B., Liu, T.J., Vehstedt, E.K., Liu, Y., Spinu, L., Mao, Z.Q.: Phys. Rev. B 78, 224503 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Hu, R., Bozin, E.S., Warren, J.B., Petrovic, C.: Phys. Rev. B 80, 214514 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Subedi, A., Zhang, L., Singh, D.J., Du, M.H.: Phys. Rev. B 78, 134514 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Ying, T.P., Chen, X.L., Wang, G., Jin, S.F., Zhou, T.T., Lai, X.F., Zhang, H., Wang, W.Y.: Sci Rep. 2, 426 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Braithwaite, D., Salce, B., Lapertot, G., Bourdarot, F., Martin, C., Aoki, D., Hanfland, M.: J. Phys. Cond. Matt. 21, 232202 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Masaki, S., Kotegawa, H., Hara, Y., Tou, H., Murata, K., Mizuguchi, Y., Takano, Y.: J. Phys. Soc. Jpn. 78, 063704 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Okada, H., Takahashi, H., Mizuguchi, Y., Takano, Y., Takahashi, H.: J. Phys. Soc. Jpn. 78, 083709 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Szymanski, K., Olszewski, W., Dobrzynski, L., Satua, D., Gawryluk, D.J., Berkowski, M., Puzniak, R., Wisniewski, A.: Supercond. Sci. Technol. 24, 105010 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Ma, M., Yuan, D., Wu, Y., Zhou, H., Dong, X., Zhou, F.: Supercond. Sci. Technol. 27, 122001 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Sales, B.C., Sefat, A.S., McGuire, M.A., Jin, R.Y., Mandrus, D., Mozharivskyj, Y.: Phys. Rev. B 79, 094521 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Mok, B.H., Rao, S.M., Ling, M.C., Wang, K.J., Ke, C.T., Wu, P.M., Chen, C.L., Hsu, F.C., Huang, T.W., Luo, J.Y., Yan, D.C., Ye, K.W., Wu, T.B., Chang, A.M., Wu, M.K.: Cryst. Growth Design. 9, 3260 (2009)CrossRefGoogle Scholar
  20. 20.
    Zhang, S.B., Sun, Y.P., Zhu, X.D., Zhu, X.B., Wang, B.S., Li, G., Lei, H.C., Luo, X., Yang, Z.R., Song, W.H., Dai, J.M.: Supercond. Sci. Technol. 22, 050020 (2009)Google Scholar
  21. 21.
    Patel, U., Hua, J., Yu, S.H., Avci, S., Xiao, Z.L., Claus, H., Schlueter, J., Vlasko-Vlasov, V.V., Welp, U., Kwok, W.K.: Appl. Phys. Lett. 94, 082508 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Maheshwari, P.K., Jha, R., Gahtori, B., Awana, V.P.S.: J. Sup. & Novel Mag. 28, L2893 (2015)CrossRefGoogle Scholar
  23. 23.
    Budko, S.L., Canfield, P.C., Sefat, A.S., Sales, B.C., McGuire, M.A., Mandrus, D.: Phys. Rev. B. 80, 134523 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Mizuguchi, Y., Furubayashi, T., Deguchi, K., Tsuda, S., Yamaguchi, T., Takano, Y.: Phys. C 470, S338–S339 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • P. K. Maheshwari
    • 1
    • 2
  • V. Raghavendra Reddy
    • 3
  • V. P. S. Awana
    • 1
  1. 1.CSIR-National Physical LaboratoryNew DelhiIndia
  2. 2.AcSIR-National Physical LaboratoryNew DelhiIndia
  3. 3.UGC-DAE Consortium for Scientific ResearchIndoreIndia

Personalised recommendations