Advertisement

Enhanced Room-Temperature Ferromagnetism Observed in SiO2-Coated CuO Nanostructures

  • Xiaofang Bian
Original Paper
  • 17 Downloads

Abstract

In this paper, the magnetic properties of pure CuO and SiO2-coated CuO nanocrystals were reported. Strongly enhanced room-temperature ferromagnetism was observed in SiO2-coated CuO nanocrystals, whose saturation magnetization is two orders of magnitude enhanced compared to that of the uncoated CuO nanocrystals. The mechanism of this enhancement was investigated. It points out the main origin of ferromagnetism in these CuO nanocrystals is the uncompensated surface state, so that the coating of SiO2 can effectively protect the surface state to improve the ferromagnetism in these CuO nanocrystals.

Keywords

Nanocrystals Copper oxide Surface state Ferromagnetism 

Abbreviations

FM

Ferromagnetic

AFM

Antiferromagnetic

HMTA

Hexamethylenetetramine

XRD

X-ray diffraction

STEM

Scanning transmission electron microscopy

HRTEM

High-resolution transmission electron microscopy

FC

Field cooled

ZFC

Zero field cooled

Notes

Funding Information

This work is supported by the Higher Educational Science and Technology Program of Shandong Province, China (Grant No. J16LJ02); Natural Science Foundation of Shandong Province, China (ZR2016GM26); and the Key Laboratory of Public Security Management Technology in Universities of Shandong (Shandong Management University).

References

  1. 1.
    Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S., Koinuma, H.: Science 291, 854 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Benstaali, W., Bentata, S., Abbad, A., Belaidi, A.: Mater. Sci. Semicond. Process. 16, 231 (2013)CrossRefGoogle Scholar
  3. 3.
    Liu, C., Yun, F., Morkoc, H.: J. Mater. Sci. - Mater. Electron. 16, 555 (2005)CrossRefGoogle Scholar
  4. 4.
    Zhang, J.T., Liu, J.F., Peng, Q., Wang, X., Li, Y.D.: Chem. Mater. 18, 867 (2006)CrossRefGoogle Scholar
  5. 5.
    Lupan, O., Cretu, V., Postica, V., Ababii, N., Polonskyi, O., Kaidas, V., Schut, F., Mishra, Y.K., Monaico, E., Tiginyanu, I.: Sensors Actuators B Chem. 224, 434 (2016)CrossRefGoogle Scholar
  6. 6.
    Sahay, R., Sundaramurthy, J., Suresh Kumar, P., Thavasi, V., Mhaisalkar, S.G., Ramakrishna, S.: J. Solid State Chem. 186, 261 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Mendez-Medrano, M.G., Kowalska, E., Lehoux, A., Herissan, A., Ohtani, B., Bahena, D., Briois, V., Colbeau-Justin, C., Rodriguez-Lopez, J.L., Remita, H.: J. Phys. Chem. C 120, 5134 (2016)CrossRefGoogle Scholar
  8. 8.
    Hsieh, C.T., Chen, J.M., Lin, H.H., Shih, C.H.: Appl. Phys. Lett. 83, 3383 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Zhan, R.Z., Chen, J., Deng, S.Z., Xu, N.S.: J. Vac. Sci. Technol. B 28, 558 (2010)CrossRefGoogle Scholar
  10. 10.
    Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., Tarascon, J.M.: Nature (London) 407, 496 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    Moosavifard, S.E., El-Kady, M.F., Rahmanifar, M.S., Kaner, R.B., Mousavi, M.F.: ACS Appl. Mater. Interfaces 7, 4851 (2015)CrossRefGoogle Scholar
  12. 12.
    Díaz-Guerra, C., Vila, M., Piqueras, J.: Appl. Phys. Lett. 96, 193105 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Raj, D.M.A., Raj, A.D., Irudayaraj, A.A.: J. Mater. Sci. - Mater. Electron. 25, 1411 (2014)CrossRefGoogle Scholar
  14. 14.
    Néel, L.: C. R. Acad. Sci. Paris 252, 4075 (1961)Google Scholar
  15. 15.
    Muraleedharan, K., Subramaniam, C.K., Venkataramani, N., Gundu Rao, T.K., Srivastava, C.M., Sankaranarayan, V., Srinivasan, R.: Solid State Commun. 76, 727 (1990)ADSCrossRefGoogle Scholar
  16. 16.
    Qin, H.W., Zhang, Z.L., Liu, X.Y., Zhang, J., Hu, J.F.: J. Magn. Magn. Mater. 322, 1994 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Punnoose, A., Magnone, H., Seehra, M.S.: Phys. Rev. B 64, 174420 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    Kodama, R.H., Berkowitz, A.E.: Phys. Rev. B 59, 6321 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    Gao, D.Q., Yang, G.J., Li, J.Y., Zhang, J., Zhang, J.L., Xue, D.S.: J. Phys. Chem. C 114, 18347 (2010)CrossRefGoogle Scholar
  20. 20.
    Lu, P., Zhou, W., Li, Y., Wang, J.C., Wu, P.: Appl. Surf. Sci. 399, 396 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    Stöber, W., Fink, A., Bohn, E.: J. Colloid Interface Sci. 26, 62 (1968)ADSCrossRefGoogle Scholar
  22. 22.
    García, M.A., Fernández Pinel, E., de la Venta, J., Quesada, A., Bouzas, V., Fernández, J.F., Romero, J.J., Martín González, M.S., Costa-Krämer, J.L.: J. Appl. Phys. 105, 013925 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Narsinga Rao, G., Yao, Y.D., Chen, J.W.: IEEE Trans. Magn. 41, 10 (2005)Google Scholar
  24. 24.
    Che, X.D., Bertram, H.N.: J. Magn. Magn. Mater. 116, 121 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    Du, H.F., Du, A.: Phys. Status Solidi B 244, 1401 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    Seehra, M.S., Punnoose, A.: Solid State Commun. 128, 299 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    Xiao, H.M., Zhu, L.P., Liu, X.M., Fu, S.Y.: Solid State Commun. 141, 431 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    Wu, M.Z., Xiong, Y., Jia, Y.S., Niu, H., Qi, H., Ye, J., Chen, Q.W.: Chem. Phys. Lett. 401, 374 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Mechanical and Electrical EngineeringShandong Management UniversityJinanPeople’s Republic of China

Personalised recommendations