Advertisement

Attractive Improvement in Structural, Magnetic, Optical, and Antimicrobial Activity of Silver Delafossite by Fe/Cr Doping

  • Asmaa A. H. El-Bassuony
  • H. K. Abdelsalam
Original Paper

Abstract

This paper presented a novel method of AgX O2 (X = Fe or Cr) delafossite using flash auto-combustion technique. X-ray diffraction pattern (XRD) clarified single-phase structure. The morphology was analyzed by high-resolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM). The composition of the samples was determined using energy dispersive X-ray (EDX) analysis. The particle size estimated from HRTEM, FESEM, and XRD analyses revealed that the samples were in the nanoscale range. The magnetic hysteresis loop of the samples was measured at room temperature (300 K) and at low temperatures (200 and 100 K). Rare behavior by shifting the hysteresis loop horizontally was observed for AgCrO2 delafossite at low temperatures (200 and 100 K). The optical properties were measured for the investigated samples. The antimicrobial study promoted that AgFeO2 delafossite had a strong antibacterial activity against Gram-positive and Gram-negative bacteria than that of AgCrO2 delafossite. However, no activity appeared for both samples against fungus micro-organisms. As a result, AgFeO2 delafossite could be applied in cancer diagnoses, biomedical applications, and energy storage in solar cell. Moreover, AgCrO2 delafossite could be applied as a photocathode in a dye-sensitized solar cell and biomedical applications.

Keywords

ABO2 Structural properties Magnetic properties Optical properties Antimicrobial activity 

References

  1. 1.
    Abdelhamid, H. N., Talib, A., Wu, H. -F.: Facile synthesis of water soluble silver ferrite (AgFeO2) nanoparticles and their biological application as antibacterial agents. RSC Adv. 5, 34594–34602 (2015).  https://doi.org/10.1039/C4RA14461A CrossRefGoogle Scholar
  2. 2.
    Ahmed, J., Mao, Y.: Delafossite CuAlO2 nanoparticles with electrocatalytic activity toward oxygen and hydrogen evolution reactions. ACS Symp. Ser. 1213, 57–72 (2016).  https://doi.org/10.1021/bk-2015-1213.ch004 CrossRefGoogle Scholar
  3. 3.
    Ahmed, J., Blakely, C. K., Prakash, J., Bruno, S. R., Yu, M., Wu, Y., Poltavets, V. V.: Scalable synthesis of delafossite CuAlO2 nanoparticles for p-type dye-sensitized solar cells applications. J. Alloys Compd. 591, 275–279 (2014).  https://doi.org/10.1016/j.jallcom.2013.12.199 CrossRefGoogle Scholar
  4. 4.
    Attili, R., Uhrmacher, M., Lieb, K., Ziegeler, L., Mekata, M., Schwarzmann, E.: Electric-field gradients at 111Cd in delafossite oxides ABO2 (A = Ag, Cu; B = Al, Cr, Fe, In, Nd, Y). Phys. Rev. B. Condens. Matter. 53, 600–608 (1996).  https://doi.org/10.1103/PhysRevB.53.600 ADSCrossRefGoogle Scholar
  5. 5.
    Kumar, S., Miclau, M., Martin, C.: Hydrothermal synthesis of AgCrO2 delafossite in supercritical water: a new single-step process. Chem. Mater. 25, 2083–2088 (2013).  https://doi.org/10.1021/cm400420e CrossRefGoogle Scholar
  6. 6.
    Diaz-Garcia, A. K., Lana-Villarreal, T., Gomez, R.: Sol-gel copper chromium delafossite thin films as stable oxide photocathodes for water splitting. J. Mater. Chem. A 3, 19683–19687 (2015).  https://doi.org/10.1039/C5TA05227K CrossRefGoogle Scholar
  7. 7.
    Abdelhamid, H. N., Wu, H.-F.: Facile synthesis of nano silver ferrite (AgFeO2) modified with chitosan applied for biothiols separation. Mater. Sci. Eng. C (2014).  https://doi.org/10.1016/j.msec.2014.08.071
  8. 8.
    El-Bassuony, A. A. H., Abdelsalam, H. K.: Enhancement of AgCrO2 by double nanometric delafossite to be applied in many technological applications. J. Mater. Sci. Mater. Electron. (2018).  https://doi.org/10.1007/s10854-017-8506-x
  9. 9.
    Clayton, J. E., Cann, D. P., Ashmore, N.: Synthesis and processing of AgInO delafossite compounds by cation exchange reactions. Thin Solid Films 411, 140–146 (2002).  https://doi.org/10.1016/S0040-6090(02)00203-1 ADSCrossRefGoogle Scholar
  10. 10.
    Xiong, D., Xu, Z., Zeng, X., Zhang, W., Chen, W., Xu, X., Wang, M., Cheng, Y. -B.: Hydrothermal synthesis of ultrasmall CuCrO2 nanocrystal alternatives to NiO nanoparticles in efficient p-type dye-sensitized solar cells. J. Mater. Chem. 22, 24760–24768 (2012).  https://doi.org/10.1039/c2jm35101c CrossRefGoogle Scholar
  11. 11.
    Bauer, A. W., Kirby, W. M., Sherris, C., Turck, M.: Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493–496 (1966)CrossRefGoogle Scholar
  12. 12.
    Mun, D., Subı, G., Oro, J., Walton, R.I., Gonzalez-Calbet, J., Garcı, E.: Ag2CuMnO4: a new silver copper oxide with delafossite structure. J. Solid State Chem. 179, 3883–3892 (2006).  https://doi.org/10.1016/j.jssc.2006.08.020 ADSCrossRefGoogle Scholar
  13. 13.
    Zhu, X., Sun, Y.: Facile chemical solution synthesis of p-type delafossite Ag-based transparent conducting AgCrO2 films in an open condition. J. Mater. Chem. C. 5, 1885–1892 (2017).  https://doi.org/10.1039/C6TC04848J CrossRefGoogle Scholar
  14. 14.
    Xiong, D., Zeng, X., Zhang, W., Wang, H., Zhao, X., Chen, W., Cheng, Y.-B.: Synthesis and characterization of CuAlO2 and AgAlO2 delafossite oxides through low-temperature hydrothermal methods. Inorg. Chem. 53(8), 4106–4116 (2014).  https://doi.org/10.1021/ic500090g CrossRefGoogle Scholar
  15. 15.
    Mao, F., Nyberg, T., Thersleff, T., Andersson, A. M., Jansson, U.: Combinatorial magnetron sputtering of AgFeO2 thin films with the delafossite structure. Mater. Des. 91, 132–142 (2016).  https://doi.org/10.1016/j.matdes.2015.11.092 CrossRefGoogle Scholar
  16. 16.
    Xiong, D., Wang, H., Zhang, W., Zeng, X., Chang, H., Zhao, X., Chen, W., Cheng, Y. -B.: Preparation of p-type AgCrO2 nanocrystals through low-temperature hydrothermal method and the potential application in p-type dye-sensitized solar cell. J. Alloys Compd. 642, 104–110 (2015).  https://doi.org/10.1016/j.jallcom.2015.04.072 CrossRefGoogle Scholar
  17. 17.
    Wang, X., Shi, Z., Yao, S., Liao, F., Ding, J., Shao, M.: Gamma ray irradiated AgFeO2 nanoparticles with enhanced gas sensor properties. J. Solid State Chem. 219, 228–231 (2014).  https://doi.org/10.1016/j.jssc.2014.07.024 ADSCrossRefGoogle Scholar
  18. 18.
    Ateia, E., El-Bassuony, A. A. H.: Fascinating improvement in physical properties of Cd/Co nanoferrites using different rare earth ions. J. Mater. Sci.: Mater. Electron. 28, 11482–11490 (2017).  https://doi.org/10.1007/s10854-017-6944-0 Google Scholar
  19. 19.
    Ateia, E., Salah, L. M., El-Bassuony, A. A. H.: Investigation of cation distribution and microstructure of nano ferrites prepared by different wet methods. J. Inorg. Organomet. Polym. Mater. 25 (2015).  https://doi.org/10.1007/s10904-015-0248-8
  20. 20.
    Manouchehri, S., Taghi, S., Benehi, M., Yousefi, M. H.: Effect of aluminum doping on the structural and magnetic properties of Mg-Mn ferrite nanoparticles prepared by coprecipitation method. J. Supercond. Nov. Magn. 4, 2179–2188 (2016).  https://doi.org/10.1007/s10948-016-3546-7 CrossRefGoogle Scholar
  21. 21.
    Nawale, A. B., Kanhe, N. S., Raut, S. A., Bhoraskar, S., Das, A. K., Mathe, V. L.: Investigation of structural, optical and magnetic properties of thermal plasma synthesized Ni-Co spinel ferrite nanoparticles. Ceram. Int. 1–11 (2017).  https://doi.org/10.1016/j.ceramint.2017.02.022
  22. 22.
    Sujatha, C., Reddy, K. V., Babu, K. S., Reddy, A. R., Rao, K. H.: Effects of heat treatment conditions on the structural and magnetic properties of MgCuZn nano ferrite. Ceram. Int. 38, 5813–5820 (2012).  https://doi.org/10.1016/j.ceramint.2012.04.029 CrossRefGoogle Scholar
  23. 23.
    Kumar, S., Miclau, M., Martin, C.: Hydrothermal synthesis of AgCrO2 delafossite in supercritical water: a new single-step process. Chem. Mater. 25, 2083–2088 (2013).  https://doi.org/10.1021/cm400420e CrossRefGoogle Scholar
  24. 24.
    Marugán, J., Christensen, P., Egerton, T., Purnama, H.: Synthesis, characterization and activity of photocatalytic sol-gel TiO2 powders and electrodes. Appl. Catal. B Environ. 89, 273–283 (2009).  https://doi.org/10.1016/j.apcatb.2009.02.007 CrossRefGoogle Scholar
  25. 25.
    El-Bassuony, A. A.: Enhancement of structural and electrical properties of novelty nanoferrite materials. J. Mater. Sci.: Mater. Electron. 28, 14489–14498 (2017).  https://doi.org/10.1007/s10854-017-7312-9 Google Scholar
  26. 26.
    El-Bassuony, A. A. H.: Tuning the structural and magnetic properties on Cu/Cr nanoferrite using different rare-earth ions. J. Mater. Sci. Mater. Electron. (2017).  https://doi.org/10.1007/s10854-017-8261-z
  27. 27.
    Ateia, E. E., El-Bassuony, A. A., Abdelatif, G., Soliman, F. S.: Novelty characterization and enhancement of magnetic properties of Co and Cu nanoferrites. J. Mater. Sci. Mater. Electron. 28 (2017).  https://doi.org/10.1007/s10854-016-5517-y
  28. 28.
    El-Bassuony, A. A. H., Abdelsalam, H. K.: Giant exchange bias of hysteresis loops on Cr3 +-doped Ag nanoparticles. J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4340-x
  29. 29.
    Maklad, M. H., Shash, N. M., Abdelsalam, H. K.: Structural and magnetic properties of nanograined Ni0.7−yZn0.3CayFe2O4 spinels. Eur. Phys. J. Appl. Phys. 66, 30402 (2014).  https://doi.org/10.1051/epjap/2014130573 CrossRefGoogle Scholar
  30. 30.
    El-Bassuony, A. A.: A comparative study of physical properties of Er and Yb nanophase ferrite for industrial application. J. Supercond. Nov. Magn. (2018).  https://doi.org/10.1007/s10948-017-4543-1
  31. 31.
    Maklad, M.H., Shash, N.M., Abdelsalam, H.K.: Synthesis, characterization and magnetic properties of nanocrystalline. Int. J. Mod. Phys. B 28(25), 1450165 (2014).  https://doi.org/10.1142/S0217979214501653 ADSCrossRefGoogle Scholar
  32. 32.
    Roy, P. K., Nayak, B. B., Bera, J.: Study on electro-magnetic properties of La substituted Ni-Cu-Zn ferrite synthesized by auto-combustion method. J. Magn. Magn. Mater. 320, 1128–1132 (2008).  https://doi.org/10.1016/j.jmmm.2007.10.025 ADSCrossRefGoogle Scholar
  33. 33.
    Miyasaka, N., Doi, Y., Hinatsu, Y.: Synthesis and magnetic properties of ALnO2 (A = Cu or Ag; Ln = rare earths) with the delafossite structure. J. Solid State Chem. 182, 2104–2110 (2009).  https://doi.org/10.1016/j.jssc.2009.05.035 ADSCrossRefGoogle Scholar
  34. 34.
    Ahmed, M. A., Mansour, S. F., El-Dek, S. I., Abu-Abdeen, M.: Conduction and magnetization improvement of BiFeO3 multiferroic nanoparticles by Ag + doping. Mater. Res. Bull. 49, 352–359 (2014).  https://doi.org/10.1016/j.materresbull.2013.09.011 CrossRefGoogle Scholar
  35. 35.
    Wang, J., Zheng, P., Li, D., Deng, Z., Dong, W., Tao, R., Fang, X.: Preparation of delafossite-type CuCrO2 films by sol-gel method. J. Alloys Compd. 509, 5715–5719 (2011).  https://doi.org/10.1016/j.jallcom.2011.02.149 CrossRefGoogle Scholar
  36. 36.
    Yin, L., Shi, Y., Lu, L., Fang, R., Wan, X., Shi, H.: A novel delafossite structured visible-light sensitive AgFeO2 photocatalyst: preparation, photocatalytic properties, and reaction mechanism. Catalysts 6, 69 (2016).  https://doi.org/10.3390/catal6050069 CrossRefGoogle Scholar
  37. 37.
    Asemi, M., Ghanaatshoar, M.: Preparation of CuCrO2 nanoparticles with narrow size distribution by sol-gel method. J. Sol-Gel Sci. Technol. 70, 416–421 (2014).  https://doi.org/10.1007/s10971-014-3298-4 CrossRefGoogle Scholar
  38. 38.
    Tholkappiyan, R., Vishista, K.: Influence of lanthanum on the optomagnetic properties of zinc ferrite prepared by combustion method. Phys. B Condens. Matter. 448, 177–183 (2014).  https://doi.org/10.1016/j.physb.2014.04.022 ADSCrossRefGoogle Scholar
  39. 39.
    Liu, Y., Gong, Y., Mellott, N. P., Wang, B., Ye, H., Wu, Y.: Luminescence of delafossite-type CuAlO2 fibers with Eu substitution for Al cations. Sci. Technol. Adv. Mater. 17, 200–209 (2016).  https://doi.org/10.1080/14686996.2016.1172024 CrossRefGoogle Scholar
  40. 40.
    El-Bassuony, A. A. H., Abdelsalam, H. K.: Modification of AgFeO2 by double nanometric delafossite to be suitable as energy storage in solar cell. J. Alloys Compd. 726, 1106–1118 (2017).  https://doi.org/10.1016/j.jallcom.2017.08.087 CrossRefGoogle Scholar
  41. 41.
    Huang, Z., Jiang, X., Guo, D., Gu, N.: Controllable synthesis and biomedical applications of silver nanomaterials. J. Nanosci. Nanotechnol. 11, 9395–9408 (2011)CrossRefGoogle Scholar
  42. 42.
    Kim, S. H., Lee, H. S., Ryu, D. S., Choi, S. J., Lee, D. S.: Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. J. Microbial. Biotechnol. 39, 77–85 (2011)Google Scholar
  43. 43.
    Hathout, A. S., Aljawish, A., Sabry, B. A., El-nekeety, A. A., Roby, M. H., Deraz, N. M., Aly, S. E., Abdel-Wahhab, M. A.: Synthesis and characterization of cobalt ferrites nanoparticles with cytotoxic and antimicrobial properties. Journal of Applied Pharmaceutical Science 7, 86–92 (2017).  https://doi.org/10.7324/JAPS.2017.70111 CrossRefGoogle Scholar
  44. 44.
    Mahmoud, K. H.: Synthesis, characterization, optical and antimicrobial studies of polyvinyl alcohol-silver nanocomposites. Spectrochim. Acta A Mol. Biomol. Spectrosc. (2014).  https://doi.org/10.1016/j.saa.2014.11.074

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceCairo UniversityGizaEgypt
  2. 2.Physics Department, Higher Institute of EngineeringNew Cairo AcademyCairoEgypt

Personalised recommendations