Skip to main content
Log in

The Effect of Oxygen Adsorption for Vacancy-Induced d0 Magnetism in HfO2 (110) Surface

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Based on the density functional theory, we investigated the electronic structures and magnetic properties of the oxygen adsorption on the defective cubic HfO2 (110) surface. The adsorption capacities of the perfect and defective surfaces follow in the sequence as: oxygen-deficient model >perfect surface >hafnium-deficient model. When the oxygen molecules adsorb on the nonmagnetic perfect HfO2 surface, the system has a local magnetic moment and the antiferromagnetic coupling is more stable. For the defective cubic HfO2 (110) surface, it is found that the oxygen vacancy is more easy to form than the hafnium vacancy by comparing the vacancy formation energy. And the hafnium vacancy could induce a large magnetic moment while the oxygen vacancy alone could not. After adsorption of the oxygen molecule, the nonmagnetic oxygen-deficient HfO2 model is transformed into the magnetic surface. On the contrary, the introduction of adsorbed oxygen molecule causes the magnetic moment of hafnium-deficient HfO2 surface to reduce. Additionally, if the oxygen molecules adsorb on the defective HfO2 (110) surface, the ferromagnetic coupling is energetically favorable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kitchen, D., Richardella, A., Tang, J.M., et al.: Atom-by-atom substitution of Mn in GaAs and visualization of their hole-mediated interactions. Nature 442, 436–439 (2006)

    Article  ADS  Google Scholar 

  2. Sato, K., Katayama-Yoshida, H.: Hyperfine interactions and magnetism of 3d transition-metal-impurities in II-VI and III-v compound-based diluted magnetic semiconductors. Hyperfine Interact. 136, 737–742 (2001)

    Article  ADS  Google Scholar 

  3. Deka, S., Joy, P.A.: Synthesis and magnetic properties of Mn doped ZnO nanowires. Solid State Commun. 142, 190–194 (2007)

    Article  ADS  Google Scholar 

  4. Wang, Y.Q., Yuan, S.L., Liu, L., et al.: Ferromagnetism in Fe-doped ZnO bulk samples. J. Magn. Magn. Mater. 320, 1423–1426 (2008)

    Article  ADS  Google Scholar 

  5. Park, J.H., Kim, M.G., Jang, H.M., et al.: Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Appl. Phys. Lett. 84, 1338–1340 (2004)

    Article  ADS  Google Scholar 

  6. Zhou, S., Potzger, K., Von Borany, J., et al.: Crystallographically oriented Co and Ni nanocrystals inside ZnO formed by ion implantation and postannealing. Phys. Rev. B 77, 035209 (2008)

    Article  ADS  Google Scholar 

  7. Kaspar, T.C., Droubay, T., Heald, S.M., et al.: Hidden ferromagnetic secondary phases in cobalt-doped ZnO epitaxial thin films. Phys. Rev. B 77(R), 201303 (2008)

    Article  ADS  Google Scholar 

  8. Venkatesan, M., Fitzgerald, C.B., Coey, J.M.D.: Thin films: unexpected magnetism in a dielectric oxide. Nature 430, 630–630 (2004)

    Article  ADS  Google Scholar 

  9. Demkov, A.A.: Investigating alternative gate dielectrics: a theoretical approach. Phys. Status Solidi B 226, 57–67 (2001)

    Article  ADS  Google Scholar 

  10. Zhao, X., Vanderbilt, D.: First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide. Phys. Rev. B 65, 233106 (2002)

    Article  ADS  Google Scholar 

  11. Hong, N.H.: Magnetism due to defects/oxygen vacancies in HfO2 thin films. Phys. Status Solidi (c) 4, 1270–1275 (2007)

    Article  ADS  Google Scholar 

  12. Liu, X., Chen, Y., Wang, L., Peng, D.L.: Transition from paramagnetism to ferromagnetism in HfO2 nanorods. J. Appl. Phys. 113, 076102 (2013)

    Article  ADS  Google Scholar 

  13. Ran, J., Yan, Z.: Observation of ferromagnetism in highly oxygen-deficient HfO2 films. J. Semicond. 30, 102002 (2009)

    Article  ADS  Google Scholar 

  14. Pemmaraju, C.D., Sanvito, S.: Ferromagnetism driven by intrinsic point defects in HfO2. Phys. Rev. Lett. 94, 217205 (2005)

    Article  ADS  Google Scholar 

  15. Weng, H., Dong, J.: Ferromagnetism in HfO2 induced by hole doping: first-principles calculations. Phys. Rev. B 73, 132410 (2006)

    Article  ADS  Google Scholar 

  16. Beltrán, J., Muñoz, M., Hafner, J.: Structural, electronic and magnetic properties of the surfaces of tetragonal and cubic HfO2. New J. Phys. 10, 063031 (2008)

    Article  ADS  Google Scholar 

  17. Wang, M., Feng, M., Lu, Y.: Possible origin of ferromagnetism in undoped monoclinic HfO2 film. Comput. Mater. Sci. 92, 120–126 (2014)

    Article  Google Scholar 

  18. Chen, G.H., Hou, Z.F., Gong, X.G.: Structural and electronic properties of cubic HfO2 surfaces. Comp. Mater. Sci. 44, 46–52 (2008)

    Article  Google Scholar 

  19. Kresse, G., Hafner, J.: Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115 (1993)

    Article  ADS  Google Scholar 

  20. Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996)

    Article  Google Scholar 

  21. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  22. Perdew, J., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  23. Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  24. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  25. Janotti, A., Van de Walle, C.G.: Native point defects in ZnO. Phys. Rev. B 76, 165202 (2007)

    Article  ADS  Google Scholar 

  26. Zhang, Y., Cao, E., Sun, L., et al.: Adsorption of NO on the SrFeO3 (001) surface: a DFT study. Comp. Mater. Sci. 102, 135–139 (2015)

    Article  Google Scholar 

  27. Li, N., Sakidja, R., Ching, W.Y.: Ab initio study on the adsorption mechanism of oxygen on Cr2AlC (0001) surface. Appl. Surf. Sci. 315, 45–54 (2014)

    Article  ADS  Google Scholar 

  28. Liu, X., Hu, J., Cheng, B., et al.: First-principles study of O2 adsorption on the LaFeO3 (010) surface. Sensor. Actuat. B-Chem. 139, 520–526 (2009)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 11604234, 11404236, and 51602214), Special Funds of the National Natural Science Foundation of China (Grant No. 11447189), and Natural Science Foundation of Shanxi (Grant No. 2015021026 and 201601D202010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjia Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, H., Liang, W., Zhou, M. et al. The Effect of Oxygen Adsorption for Vacancy-Induced d0 Magnetism in HfO2 (110) Surface. J Supercond Nov Magn 31, 3361–3370 (2018). https://doi.org/10.1007/s10948-018-4608-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4608-9

Keywords

Navigation