Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 10, pp 3119–3131 | Cite as

Electronic and Magnetic Properties of Os-Doped Rhodium Clusters: a Theoretical Study

  • Abdel-Ghani BoudjahemEmail author
  • Mouhssin Boulbazine
  • Moussa Chettibi
Original Paper


The stability and electronic and magnetic properties of RhnOs (n= 2–12) clusters in their most stable configurations were systematically studied by using density functional theory (DFT) at M06L/aug-cc-pVDZ level. Calculation of the second-order difference of energies and fragmentation energies exhibited that Rh3Os, Rh5Os, Rh7Os, and Rh9Os clusters are more stable than any other clusters. The calculated HOMO-LUMO energy gaps of the RhnOs clusters are found to be in the range of 0.018 to 0.299 eV, implying that the metallic behavior can appear in these clusters. Accordingly, the RhnOs clusters can be employed as heterogeneous nanocatalysts in many chemical reactions. The local Fukui function (\(f_{k}^{-} )\) has also been calculated, and the obtained results reveal that the highest \(f_{k}^{-} \) values are predicted for the Rh atoms. Therefore, the Rh atoms in the clusters are considered the most reactive sites that undergo reactions with electrophilic reagents. The analysis of the magnetic properties of the RhnOs clusters shows that the total magnetic moment per atom of these clusters varies from 0.67 to 1.75 µB/atom. And, the PDOS analysis reveals that the d orbitals play a crucial role for the magnetism of the RhnOs clusters, and the contribution of the s and p orbitals is small.


DFT RhnOs clusters Reactivity Electronic properties Magnetic properties 


Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.


  1. 1.
    Schmid, G.: Large clusters and colloids. Metals in the embryonic state. Chem. Rev. 92, 1709–1727 (1992)CrossRefGoogle Scholar
  2. 2.
    Lewis, L.N.: Chemical catalysis by colloids and clusters. Chem. Rev. 93, 2693–2730 (1993)CrossRefGoogle Scholar
  3. 3.
    Xu, X.S., Yin, S.Y., Moro, R., de Heer, W.A.: Magnetic moments and adiabatic magnetization of free cobalt clusters. Phys. Rev. Lett. 95, 237209 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Parks, E.K., Klots, T.D., Riley, S.J.: Chemical probes of metal cluster ionization potentials. J. Chem. Phys. 92, 3813–3826 (1990)ADSCrossRefGoogle Scholar
  5. 5.
    Cox, A.J., Louderback, J.G., Apsel, S.E., Bloomfield, L.A.: Magnetism in 4d-transition metal clusters. Phys. Rev. B 49, 12295–12298 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    Soltani, A., Boudjahem, A.: Stabilities, electronic and magnetic properties of small Rhn (n = 2-12) clusters: a DFT approach. Comput. Theor. Chem. 1047, 6–14 (2014)CrossRefGoogle Scholar
  7. 7.
    Yonezawa, T., Imamura, K., Kimizuka, N.: Direct preparation and size control of palladium nanoparticle hydrosols by water-soluble isocyanide ligands. Langmuir 17, 4701–4703 (2001)CrossRefGoogle Scholar
  8. 8.
    Zhang, J.Y., Fang, Q., Kenyon, A.J., Boyd, I.W.: Visible photoluminescence from nanocrystalline Ge grwn at room temperature by photo-oxidation of SiGe using a 126 nm lamp. Appl. Surf. Sci. 208–209, 364–368 (2003)ADSGoogle Scholar
  9. 9.
    Dong, C.D., Gong, X.G.: Magnetism enhanced layer-like structure of small cobalt clusters. Phys. Rev. B 78, 020409–020412 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Teranishi, T., Miyake, M.: Size control of palladium nanoparticles and their crystal structures. Chem. Mater. 10, 594–600 (1998)CrossRefGoogle Scholar
  11. 11.
    Gopidas, K.R., Whitesell, J.M., Fox, M.A.: Synthesis, characterization, and catalytic applications of a palladium-nanoparticles-cored dendrimer. Nano. Lett. 3, 1757–1760 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Boudjahem, A., Chettibi, M., Monteverdi, S., Bettahar, M.: Acetylene hydrogenation over NiCu nanoparticles supported on silica prepared by aqueous hydrazine reduction. J. Nanosci. Nanotechnol. 9, 3546–3554 (2009)CrossRefGoogle Scholar
  13. 13.
    Boudjahem, A., Redjel, A., Mokrane, T.: Preparation, characterization and performance of Pd/SiO2 catalyst for benzene catalytic hydrogenation. J. Ind. Eng. Chem. 18, 303–308 (2012)CrossRefGoogle Scholar
  14. 14.
    Chettibi, M., Boudjahem, A., Bettahar, M.: Synthesis of Ni/SiO2 nanoparticles for catalytic benzene hydrogenation. Transit. Metal. Chem. 36, 163–169 (2011)CrossRefGoogle Scholar
  15. 15.
    Boudjahem, A., Bouderbala, W., Bettahar, M.: Benzene hydrogenation over Ni-Cu/SiO2 catalysts prepared by aqueous hydrazine reduction. Fuel. Process. Technol. 92, 500–506 (2011)CrossRefGoogle Scholar
  16. 16.
    Sidhpuria, K.B., Patel, H.A., Parikh, P.A., Bahadur, P., Bajaj, H.C., Jasra, R.V.: Rhodium nanoparticles intercalated into montmorillonite for hydrogenation of aromatic compounds in the presence of thiophene. Appl. Clay. Sci. 42, 386–390 (2009)CrossRefGoogle Scholar
  17. 17.
    Sanchez, A., Fang, M., Ahmed, A., Sanchez-Delgado, R.A.: Hydrogenation of arenes, N-heteroaromatic compounds, and alkenes catalyzed by rhodium nanoparticles supported on magnesium oxide. Appl. Catal. A 477, 117–124 (2014)CrossRefGoogle Scholar
  18. 18.
    Campos, C.H., Rosenberg, E., Fierro, J.L., Urbano, B.F., Rivas, B.L., Torres, C.C., Reyes, P.A.: Hydrogenation of nitro-compounds over rhodium catalysts supported on poly(acrylic acid)/Al2O3 composites. Appl. Catal. A 489, 280–291 (2015)CrossRefGoogle Scholar
  19. 19.
    Behr, A., Brunsch, Y., Lux, A.: Rhodium nanoparticles as catalysts in the hydroformylation of 1-dodecene and their recycling in thermomorphic solvent systems. Tetrahedron. Lett. 53, 2680–2683 (2012)CrossRefGoogle Scholar
  20. 20.
    Bruss, A.J., Gelesky, M.A., Machado, G., Dupont, J.: Rh(0) nanoparticles as catalyst precursors for the solventless hydroformylation of olefins. J. Mol. Catal. A 252, 212–218 (2006)CrossRefGoogle Scholar
  21. 21.
    Yoon, T.J., Kim, J.I., Lee, J.K.: Rh-based olefin hydroformylation catalysts and the change of their catalytic activity depending on the size of immobilizing supporters. Inorg. Chim. Acta. 345, 228–234 (2003)CrossRefGoogle Scholar
  22. 22.
    Han, D., Li, X., Zhang, H., Liu, Z., Hu, G., Li, C.: Asymmetric hydroformylation of olefins catalyzed by rhodium nanoparticles chirally stabilized with (R)-BINAP ligan. J. Mol. Catal. A 283, 15–22 (2008)CrossRefGoogle Scholar
  23. 23.
    Cox, A.J., Louderback, J.G., Bloomfield, L.A.: Experimental observation of magnetism in rhodium clusters. Phys. Rev. Lett. 71, 923–926 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    Bertoli, M., Choualeb, A., Lough, A.J., Moore, B., Spasyuk, D., Gusev, D.G.: Osmium and ruthenium catalysts for dehydrogenation of alcohols. Organometallics 30, 3479–3482 (2011)CrossRefGoogle Scholar
  25. 25.
    Mendes, F.M., Schmal, M.: The cyclohexanol dehydrogenation on Rh-Cu/Al2O3 catalysts: chemisorpion and reaction. Appl. Catal. A: Gen. 163, 153–164 (1997)CrossRefGoogle Scholar
  26. 26.
    Trunschke, A., Ewald, H., Gutschick, D., Miessner, H., Skupin, M., Walther, B., Bottcher, H.C.: New bimetallic Rh-Mo and Rh-W clusters as precursors for selective heterogeneous CO hydrogenation. J. Mol. Catal. 56, 95–106 (1989)CrossRefGoogle Scholar
  27. 27.
    Zitoun, D., Amiens, C., Chaudret, B.: Synthesis and magnetism of CoxRh1−x and CoxRu1−x nanoparticles. J. Phys. Chem. B 107, 6997–7005 (2003)CrossRefGoogle Scholar
  28. 28.
    Rakap, M.: The highest catalytic activity in the hydrolysis of ammonia borane by poly(N-vinyl-2-pyrrolidone)-protected palladium-rhodium nanoparticles for hydrogen generation. Appl. Catal. B 163, 129–134 (2015)CrossRefGoogle Scholar
  29. 29.
    Jiang, H.-L., Xu, Q.: Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. Catal. Today 170, 56–63 (2011)CrossRefGoogle Scholar
  30. 30.
    Shen, J., Cao, N., Liu, Y., He, M., Hu, K., Luo, W., Cheng, G.: Hydrolytic dehydrogenation of amine-boranes catalyzed graphene supported rhodium-nickel nanoparticles. Catal. Commun. 59, 14–20 (2015)CrossRefGoogle Scholar
  31. 31.
    Durap, F., Zahmakiran, M., Ozkar, S.: Water soluble laurate-stabilized rhodium (0) nanoclusters catalyst with unprecedented catalytic lifetime in the hydrolytic dehydrogenation of ammonia borane. Appl. Catal. A 369, 53–59 (2009)CrossRefGoogle Scholar
  32. 32.
    Srivastava, A.K., Misra, N.: Structures, stabilities, electronic and magnetic properties of small RhxMny (x + y = 2-4) clusters. Comput. Theor. Chem. 1047, 1–5 (2014)CrossRefGoogle Scholar
  33. 33.
    Mokkath, J.H., Pastor, G.M.: First-principles study of structural, magnetic, and electronic properties of small Fe-Rh alloy clusters. Phys. Rev. B 85, 054407 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Dennler, S., Morillo, J., Pastor, G.M.: Calculation of magnetic and structural properties of small Co-Rh clusters. Surf. Sci. 532–535, 334–340 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    Lv, J., Bai, X., Jia, J.F., Xu, X.H., Wu, H.S.: Structural, electronic and magnetic properties of ConRh clusters from density functional calculations. Physica B. 407, 14–21 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    Yang, J.X., Wei, C.F., Guo, J.J.: Density functional study of AunRh (n = 1-8) clusters. Physica B. 405, 4892–4896 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, revision D.01. Gaussian, Inc., Wallingford (2013)Google Scholar
  38. 38.
    Zhao, Y., Truhlar, D.G.: A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. 125, 194101 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    Zhao, Y., Truhlar, D.G.: Density functionals with broad applicability in chemistry. Acc. Chem. Res. 41, 157–167 (2008)CrossRefGoogle Scholar
  40. 40.
    Dunning, T.H.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989)ADSCrossRefGoogle Scholar
  41. 41.
    Khetrapal, N.S., Jian, T., Lopez, G.V., Pande, S., Wang, L.-S., Zeng, X.C.: Probing the structural evolution of gold-aluminum bimetallic clusters (Au2Aln−, n = 3-11) using photoelectron spectroscopy and theoretical calculations. J. Phys. Chem. C 121, 18234–18243 (2017)CrossRefGoogle Scholar
  42. 42.
    Khetrapal, N.S., Jian, T., Pal, R., Lopez, G.V., Pande, S., Wang, L.-S., Zeng, X.C.: Probing the structures of gold-aluminum alloy clusters AuxAly−: a joint experimental and theoretical study. Nanoscale 8, 9805–9814 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    Khetrapal, N.S., Satya, S.S., Zeng, X.C.: Structural evolution of gold clusters Aun− (n = 21-25), revised. J. Phys. Chem. A 121, 2466–2474 (2017)CrossRefGoogle Scholar
  44. 44.
    Beltran, M.R., Zamudio, F.B., Chauhan, V., Sen, P., Wang, H., Ko, Y.J., Bowen, K.: Ab initio and anion photoelectron studies of Rhn (n = 1-9) clusters. Eur. Phys. J. D 67, 63–70 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    Chien, C.H., Blaisten-Barojas, E., Pederson, M.R.: Magnetic and electronic properties of rhodium clusters. Phys. Rev A 58, 2196–2202 (1998)ADSCrossRefGoogle Scholar
  46. 46.
    Gingerich, K.A., Cocke, D.L.: Thermodynamic confirmation for the high stability of gaseous TiRh as predicted by the Brewer-Engel metallic theory and the dissociation energy of diatomic rhodium. J. Chem. Soc. Chem. Commun. 1, 536–536 (1972)CrossRefGoogle Scholar
  47. 47.
    Jules, J.L., Lombardi, J.R.: Transition metal dimer internuclear distances from measured force constants. J. Phys. Chem A 107, 1268–1273 (2003)CrossRefGoogle Scholar
  48. 48.
    Morse, M.D.: Clusters of transition-metal atoms. Chem. Rev. 86, 1049–1109 (1986)CrossRefGoogle Scholar
  49. 49.
    Du, J., Sun, X., Wang, H.: The confirmation of accurate combination of functional and basis set for transition-metal dimers: Fe2, Co2, Ni2, Ru2, Rh2, Pd2, Os2, Ir2, and Pt2. Int. J. Quantum. Chem. 108, 1517–1517 (2008)CrossRefGoogle Scholar
  50. 50.
    Wu, Z.J., Han, B., Dai, Z.W., Jin, P.C.: Electronic properties of rhenium, osmium and iridium dimmers by density functional methods. Chem. Phys. Lett. 403, 367–371 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    Cimpeanu, V., Kocevar, M., Parvulescu, V., Leitner, W.: Preparation of rhodium nanoparticles in carbon dioxide induced ionic liquids and their application to selective hydrogenation. Angew. Chem. Int. 48, 1085–1088 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Abdel-Ghani Boudjahem
    • 1
    Email author
  • Mouhssin Boulbazine
    • 1
    • 2
  • Moussa Chettibi
    • 1
  1. 1.Nanomaterials Chemistry GroupUniversity of GuelmaGuelmaAlgeria
  2. 2.Laboratory of Applied ChemistryUniversity of GuelmaGuelmaAlgeria

Personalised recommendations