Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 10, pp 3193–3199 | Cite as

Ab Initio Study of Electronic and Magnetic Properties of Germanene with Different Nonmagnetic Metal Adatoms

  • M. LuoEmail author
  • Y. E. Xu
Original Paper


Electronic and magnetic properties of two-dimensional (2D) germanene (Ge) with five different adatoms have been analyzed and discussed by the DFT method. Different nonmagnetic metals adsorbed at different sites, on one hand, a magnetic moment is induced by Mg adatom in the germanene. On the other hand, the adsorptions of Al, Ga, Li, and Na show no magnetism. We further study the effect of strain on the magnetism in Mg-adsorbed germanene; we apply an isotropic tensile and compressive strain on the system. On the basis of our calculations, a tunable magnetism shows as the strain increases. The analysis of the PDOS shows that the s–p hybridization between Mg and Ge atoms results in such magnetic behavior. These magneticadsorbed germanene materials might show potential applications in the nanoscale devices.


Germanene DFT calculations Nonmagnetic metal Magnetism Strain 



The work is supported by the Discipline Project of Shanghai Polytechnic University (Grant No. XXKZD1605) and the National Natural Science Foundation of China (Grant No. 51776116). We also thank the National Supercomputer Center in Shenzhen.


  1. 1.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Zhang, Y.B., Tan, Y.W., Stormer, H.L., Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Sun, C.Q.: Dominance of broken bonds and nonbonding electrons at the nanoscale. Nanoscale 2, 1930–1938 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Du, X.J., Chen, Z., Zhang, J., Ning, Z.R., Fan, X.L.: First-principles study on armchair AlN nanoribbons with different edge terminations. Superlattices Microstruct. 67, 40–46 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Stoller, M.D., Park, S., Zhu, Y., An, J., Ruoff, R.S.: Graphene-based ultracapacitors. Nano Lett. 8, 3498–3505 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Ma, Y.D., Dai, Y., Wei, W., Niu, C. W., Yu, L., Huang, B.B.: First-principles study of the graphene@MoSe2 heterobilayers. J. Phys. Chem. C 115, 20237–20241 (2011)CrossRefGoogle Scholar
  7. 7.
    Li, X.R., Dai, Y., Ma, Y.D., Huang, B.B.: Electronic and magnetic properties of honeycomb transition metal monolayers: first-principles insights. Phys. Chem. Chem. Phys. 16, 13383–13389 (2014)CrossRefGoogle Scholar
  8. 8.
    Ma, Y.D., Dai, Y., Guo, M., Niu, C.W., Lu, J.B., Huang, B.B.: Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers. Phys. Chem. Chem. Phys. 13, 15546–15553 (2011)CrossRefGoogle Scholar
  9. 9.
    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Liu, C., Feng, W., Yao, Y.: Quantum spin hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 107, 076802–076805 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Si, C., Liu, J.W., Xu, Y., Wu, J., Gu, B.L., Duan, W.H.: Functionalized germanene as a prototype of large-gap two-dimensional topological insulators. Phys. Rev. B 89, 115429–115435 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Butler, S., Jiang, S.S., Restrepo, D.O., Windl, W., Goldberger, J.E.: Stability and exfoliation of germanane: a germanium graphene analogue. ACS Nano 7, 4414–4421 (2013)CrossRefGoogle Scholar
  13. 13.
    Acun, A., Zhang, L., Bampoulis, P., Farmanbar, M., van Houselt, A., Rudenko, A.N., Lingenfelder, M., Brocks, G., Poelsema, B., Katsnelson, M.I., Zandvliet, H.J.W.: Germanene: the germanium analogue of grapheme. J. Phys.: Condens. Matter 27, 443002–443013 (2015)Google Scholar
  14. 14.
    Cahangirov, S., Topsakal, M., Akturk, E., Sahin, H., Ciraci, S.: Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804–236807 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Li, S.S., Zhang, C.W., Ji, W.X., Li, F., Wang, P.J., Hu, S.J., Yan, S.S., Liu, Y.S.: Tunable electronic and magnetic properties in germanene by alkali, alkaline-earth, group III and 3d transition metal atom adsorption. Phys. Chem. Chem. Phys. 16, 15968–15978 (2014)CrossRefGoogle Scholar
  16. 16.
    Sun, M.L., Ren, Q.Q., Wang, S.K., Zhang, Y.J., Dua, Y.H., Yu, J., Tang, W.C.: Magnetism in transition-metal-doped germanene: a first-principles study. Comp. Mater. Sci. 118, 112–116 (2016)CrossRefGoogle Scholar
  17. 17.
    Pang, Q., Li, L., Zhang, C.L., Wei, X.M., Song, Y.L.: Structural, electronic and magnetic properties of 3d transition metal atom adsorbed germanene: a first-principles study. Mater. Chem. Phys. 160, 96–104 (2015)CrossRefGoogle Scholar
  18. 18.
    Luo, M., Shen, Y.H., Yin, T.L.: Ab initio study of electronic and magnetic properties in TM-doped germanene. J. Supercond. Nov. Magn. 30, 1019–1024 (2017)CrossRefGoogle Scholar
  19. 19.
    Yang, Y., Fan, X.L., Zhang, H.: Effect of strain on the magnetic states of transition metal atoms doped monolayer WS2. Comput. Mater. Sci. 117, 354–360 (2016)CrossRefGoogle Scholar
  20. 20.
    Zhang, Y.F., Zhang, Y., Liu, F.: Formation of hydrogenated graphene nanoripples by strain engineering and directed surface self-assembly. Phys. Rev. B 83, 041403–041410 (2011)ADSGoogle Scholar
  21. 21.
    Yazyev, O.V., Helm, L.: Defect-induced magnetism in graphene. Phys. Rev. B 75, 125408–125412 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    Shen, L., Wu, R.Q., Pan, H., Peng, G.W., Yang, M., Sha, Z.D., Feng, Y.P.: Mechanism of ferromagnetism in nitrogen-doped ZnO: first-principle calculations. Phys. Rev. B 78, 073306–073309 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Hu, A.M., Wang, L.L., Meng, B., Xiao, W.Z.: Ab initio study of magnetism in nonmagnetic metal substituted monolayer MoS2. Solid State Commun 220, 67–71 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    Li, X.D., Fang, Y.M., Wu, S.Q., Zhu, Z.Z.: Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS2. AIP Adv. 5, 057143–057151 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Liu, X., Wen, Y.W., Chen, Z.Z., Shan, B., Chen, R.: A first- principles study of sodium adsorption and diffusion on phosphorene. Phys. Chem. Chem. Phys. 17, 16398–16404 (2015)CrossRefGoogle Scholar
  26. 26.
    Xiao, G., Wang, L.L., Rong, Q.Y., Xu, H.Q., Xiao, W.Z.: Half-metallic and magnetic properties of AlN nanosheets doped with nonmagnetic metals: a first-principles study. Com. Mater. Sci. 124, 98–105 (2016)CrossRefGoogle Scholar
  27. 27.
    Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    Ni, Z.Y., Liu, Q.H., Tang, K.C., Zheng, J.X., Zhou, J., Qin, R., Gao, Z., Yu, D.P., Lu, J.: Tunable band gap in silicene and germanene. Nano Lett. 12, 113–118 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Nayak, A.P., Yuan, Z., Cao, B.X., Liu, J., Wu, J.J., Moran, S.T., Li, T.S., Akinwande, D.J., Jin, C.Q., Lin, J.F.: Pressure-modulated conductivity, carrier density, and mobility of multilayered tungsten disulfide. ACS Nano 9, 9117–9123 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsShanghai Polytechnic UniversityShanghaiChina
  2. 2.Department of Electronic EngineeringShang Hai Jian Qiao UniversityShanghaiChina

Personalised recommendations