Skip to main content
Log in

Effect of Core Electrons in Defining the Total Energy, Correlation Energy, and Binding Energy of Graphene, Graphite, and Diamond: a First-Principles Study

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Effects of core electrons on total energy, correlation energy, and binding energy of graphene, graphite, and diamond have been investigated along with density functional theory (DFT) calculations at the PBE level of theory using all electron and frozen-core calculations. For these calculations, correlation-consistent basis sets cc-pVXZ and cc-pCVXZ have been used where X is the cardinal number that represents the maximum angular momentum number in the basis set. By taking the difference between all electron and frozen-core calculations, core-electron binding energy contribution for each basis set has been obtained. It has been shown that to reduce the effects of core electrons, large basis sets should be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Commun. 6, 183–191 (2007)

    Google Scholar 

  2. Stoller, M.D., Park, S.J., Zhu, Y.W., Ann, J.H., Ruoff, R.S.: Graphene-based ultracapacitors. Nanolett 8, 3498–3502 (2008)

    Article  ADS  Google Scholar 

  3. Wang, Y., Shi, Z.Q., Huang, Y., Ma, Y.F., Wang, C.Y., Chen, M.M., Chen, Y.S.: Supercapacitor devices based on graphene materials. J. Phys. Chem. C 113, 13103–13107 (2009)

    Article  Google Scholar 

  4. Qin, M.M., Feng, Y.Y., Ji, T.X., Feng, W.: Enhancement of cross-plane thermal conductivity and mechanical strength via vertical aligned carbon nanotube@graphite architecture. Carbon 104, 157–168 (2016)

    Article  Google Scholar 

  5. Yang, K., Feng, L.Z., Shi, X.Z., Liu, Z.: Nano-graphene in biomedicine: theranostic applications. Chem. Soc. Rev. 42, 530–547 (2013)

    Article  Google Scholar 

  6. Niu, Y.B, Xu, M.W., Guo, C.X., Li, C.M.: Pyro-synthesis of a nanostructured NaTi2(PO4)(3)/C with a novel lower voltage plateau for rechargeable sodium-ion batteries. J. Colloid Interface Sci. 474, 88–92 (2016)

    Article  ADS  Google Scholar 

  7. Wan, F., Lu, H.Y., Zhang, X.H., Liu, D.H., Zhang, J.P., He, X.Y., Wu, X.L.: The in-situ-prepared micro/nanocomposite composed of Sb and reduced graphene oxide as superior anode for sodium-ion batteries. J. Alloy. Compd. 672, 72–78 (2016)

    Article  Google Scholar 

  8. Liang, M.H., Zhi, L.J.: Graphene-based electrode materials for rechargeable lithium batteries. J. Mater. Chem. 19, 5871–5878 (2009)

    Article  Google Scholar 

  9. Kim, M.II, Kim, M.S., Woo, M.A., Ye, Y., Kang, K.S., Lee, J, Park, H.G.: Highly efficient colorimetric detection of target cancer cells utilizing superior catalytic activity of graphene oxide-magnetic-platinum nanohybrids. Nanoscale 6, 1529–1536 (2014)

    Article  ADS  Google Scholar 

  10. Lin, Z.Z.: Graphdiyne as a promising substrate for stabilizing Pt nanoparticle catalyst. Carbon 86, 301–309 (2015)

    Article  Google Scholar 

  11. Jahani, D., Abaspour, L., Soltani-Vala, A., Barvestani, J.: A leap over Dirac Cones in one-dimensional graphene based photonic crystals. Physcia B 491, 93–97 (2016)

    Article  ADS  Google Scholar 

  12. Mousavi, H., Bagheri, M.: Electronic properties of impurity-infected few-layer graphene nanoribbons. Physica B 458, 107–113 (2015)

    Article  ADS  Google Scholar 

  13. Heerema, S.J., Dekker, C.: Graphene nanodevices for DNA sequencing. Nat. Nanotechnol. 11, 127–136 (2016)

    Article  ADS  Google Scholar 

  14. Madani, A., Entezar, S.R.: Optical properties of one-dimensional photonic crystals containing graphene sheets. Physica B 431, 1–5 (2013)

    Article  ADS  Google Scholar 

  15. Srinivas, G., Zhu, Y.W., Piner, R., Skipper, N., Ellerby, M., Ruoff, R.: Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity. Carbon 48, 630–635 (2010)

    Article  Google Scholar 

  16. Ferri, A.C.: Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)

    Article  ADS  Google Scholar 

  17. Balog, R., Jorgensen, B., Nilsson, L., Andersen, M., Rienks, E., Bianchi, M., Fanetti, M., Laegsgaard, E., Baraldi, A., Lizzit, S., Sljiivancanin, Z., Besenbacher, F., Hammer, B., Pedersen, T. G., Hofmann, P., Hornekaer, L.: Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 9, 315–319 (2010)

    Article  ADS  Google Scholar 

  18. Mogulkoc, A.: Effects of electron-acoustic phonon interaction in the presence of spin-orbit couplings in graphene. Physica B 473, 20–25 (2015)

    Article  ADS  Google Scholar 

  19. Okamoto, Y.: Density-functional calculations of icosahedral M13 (M=Pt and Au) clusters on graphene sheets and flakes. Chem. Phys. Lett. 420, 382–386 (2006)

    Article  ADS  Google Scholar 

  20. Zhu, T.Y., de Silva, P., van Aggelen, H., Van Voorhis, T.: Many-electron expansion: a density functional hierarchy for strongly correlated systems. Phys. Rev. B 93, 21108 (2016)

    Google Scholar 

  21. Tao, J.M., Perdew, J.P., Staroverov, V.N., Scuseria, G.E.: Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91, 146401 (2003)

    Article  ADS  Google Scholar 

  22. May, A.J., Valeev, E., Polly, R., Manby, F.R.: Analysis of the errors in explicitly correlated electronic structure theory. Phys. Chem. Chem. Phys. 7, 2710–2713 (2005)

    Article  Google Scholar 

  23. Dunning, T.H.: Gaussian-basis sets for use in correlated molecular calculations. 1. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989)

    Article  ADS  Google Scholar 

  24. Dunning, T.H.: A road map for the calculation of molecular binding energies. J. Phys. Chem. A 104, 9062–9080 (2000)

    Article  Google Scholar 

  25. Dunning, T.H., Peterson, K.A.: Approximating the basis set dependence of coupled cluster calculations: evaluation of perturbation theory approximations for stable molecules. J. Chem. Phys. 113, 7799–7808 (2000)

    Article  ADS  Google Scholar 

  26. Bagus, P.S., Sousa, C., Illas, F.: Consequences of electron correlation XPS binding energies: representative case for C(1s) and O(1s) XPS of CO. J. Chem. Phys. 145, 144303 (2016)

    Article  ADS  Google Scholar 

  27. Foglia, N.O., Morzan, U.N., Estrin, D.A., Scherlis, D.A., Lebrero, M.C.G.: Role of core electrons in quantum dynamics using TDDFT. J. Chem. Theory. Comput. 13, 77–85 (2017)

    Article  Google Scholar 

  28. Tolbatov, I., Chipman, D.M.: Comparative study of Gaussian basis sets for calculation of core electron binding energies in first row hydrides and glycine. Theor. Chem. Acc. 133, 1560 (2014)

    Article  Google Scholar 

  29. Takahata, Y.: Substituent effects in chain and ring pi-systems studied by core-electron binding energies calculated by density functional theory. Comput. Theor. Chem. 978, 77–83 (2011)

    Article  Google Scholar 

  30. Takahata, Y.: Substituent effect in 1-X-decanes and 3-X-gonanes based on core-electron binding energies calculated with density-functional theory. Comput. Theor. Chem. 1024, 9–14 (2013)

    Article  Google Scholar 

  31. Neese, F.: ORCA program system. Comput. Mol. Sci. 2, 73–78 (2012)

    Article  Google Scholar 

  32. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  33. Lide, D.R. (ed.): In: Chemical Rubber Company Handbook of Chemistry and Physics, 79th edn. CRC Press, Boca Raton (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salih Akbudak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbudak, S., Ellialtıoğlu, M.R. Effect of Core Electrons in Defining the Total Energy, Correlation Energy, and Binding Energy of Graphene, Graphite, and Diamond: a First-Principles Study. J Supercond Nov Magn 31, 3097–3104 (2018). https://doi.org/10.1007/s10948-018-4577-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4577-z

Keywords

Navigation