Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 10, pp 3097–3104 | Cite as

Effect of Core Electrons in Defining the Total Energy, Correlation Energy, and Binding Energy of Graphene, Graphite, and Diamond: a First-Principles Study

  • Salih AkbudakEmail author
  • M. Recai Ellialtıoğlu
Original Paper


Effects of core electrons on total energy, correlation energy, and binding energy of graphene, graphite, and diamond have been investigated along with density functional theory (DFT) calculations at the PBE level of theory using all electron and frozen-core calculations. For these calculations, correlation-consistent basis sets cc-pVXZ and cc-pCVXZ have been used where X is the cardinal number that represents the maximum angular momentum number in the basis set. By taking the difference between all electron and frozen-core calculations, core-electron binding energy contribution for each basis set has been obtained. It has been shown that to reduce the effects of core electrons, large basis sets should be used.


Graphene Correlation-consistent basis sets Graphite Diamond 


  1. 1.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Commun. 6, 183–191 (2007)Google Scholar
  2. 2.
    Stoller, M.D., Park, S.J., Zhu, Y.W., Ann, J.H., Ruoff, R.S.: Graphene-based ultracapacitors. Nanolett 8, 3498–3502 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Wang, Y., Shi, Z.Q., Huang, Y., Ma, Y.F., Wang, C.Y., Chen, M.M., Chen, Y.S.: Supercapacitor devices based on graphene materials. J. Phys. Chem. C 113, 13103–13107 (2009)CrossRefGoogle Scholar
  4. 4.
    Qin, M.M., Feng, Y.Y., Ji, T.X., Feng, W.: Enhancement of cross-plane thermal conductivity and mechanical strength via vertical aligned carbon nanotube@graphite architecture. Carbon 104, 157–168 (2016)CrossRefGoogle Scholar
  5. 5.
    Yang, K., Feng, L.Z., Shi, X.Z., Liu, Z.: Nano-graphene in biomedicine: theranostic applications. Chem. Soc. Rev. 42, 530–547 (2013)CrossRefGoogle Scholar
  6. 6.
    Niu, Y.B, Xu, M.W., Guo, C.X., Li, C.M.: Pyro-synthesis of a nanostructured NaTi2(PO4)(3)/C with a novel lower voltage plateau for rechargeable sodium-ion batteries. J. Colloid Interface Sci. 474, 88–92 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Wan, F., Lu, H.Y., Zhang, X.H., Liu, D.H., Zhang, J.P., He, X.Y., Wu, X.L.: The in-situ-prepared micro/nanocomposite composed of Sb and reduced graphene oxide as superior anode for sodium-ion batteries. J. Alloy. Compd. 672, 72–78 (2016)CrossRefGoogle Scholar
  8. 8.
    Liang, M.H., Zhi, L.J.: Graphene-based electrode materials for rechargeable lithium batteries. J. Mater. Chem. 19, 5871–5878 (2009)CrossRefGoogle Scholar
  9. 9.
    Kim, M.II, Kim, M.S., Woo, M.A., Ye, Y., Kang, K.S., Lee, J, Park, H.G.: Highly efficient colorimetric detection of target cancer cells utilizing superior catalytic activity of graphene oxide-magnetic-platinum nanohybrids. Nanoscale 6, 1529–1536 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Lin, Z.Z.: Graphdiyne as a promising substrate for stabilizing Pt nanoparticle catalyst. Carbon 86, 301–309 (2015)CrossRefGoogle Scholar
  11. 11.
    Jahani, D., Abaspour, L., Soltani-Vala, A., Barvestani, J.: A leap over Dirac Cones in one-dimensional graphene based photonic crystals. Physcia B 491, 93–97 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Mousavi, H., Bagheri, M.: Electronic properties of impurity-infected few-layer graphene nanoribbons. Physica B 458, 107–113 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Heerema, S.J., Dekker, C.: Graphene nanodevices for DNA sequencing. Nat. Nanotechnol. 11, 127–136 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Madani, A., Entezar, S.R.: Optical properties of one-dimensional photonic crystals containing graphene sheets. Physica B 431, 1–5 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Srinivas, G., Zhu, Y.W., Piner, R., Skipper, N., Ellerby, M., Ruoff, R.: Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity. Carbon 48, 630–635 (2010)CrossRefGoogle Scholar
  16. 16.
    Ferri, A.C.: Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Balog, R., Jorgensen, B., Nilsson, L., Andersen, M., Rienks, E., Bianchi, M., Fanetti, M., Laegsgaard, E., Baraldi, A., Lizzit, S., Sljiivancanin, Z., Besenbacher, F., Hammer, B., Pedersen, T. G., Hofmann, P., Hornekaer, L.: Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 9, 315–319 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Mogulkoc, A.: Effects of electron-acoustic phonon interaction in the presence of spin-orbit couplings in graphene. Physica B 473, 20–25 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Okamoto, Y.: Density-functional calculations of icosahedral M13 (M=Pt and Au) clusters on graphene sheets and flakes. Chem. Phys. Lett. 420, 382–386 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Zhu, T.Y., de Silva, P., van Aggelen, H., Van Voorhis, T.: Many-electron expansion: a density functional hierarchy for strongly correlated systems. Phys. Rev. B 93, 21108 (2016)Google Scholar
  21. 21.
    Tao, J.M., Perdew, J.P., Staroverov, V.N., Scuseria, G.E.: Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91, 146401 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    May, A.J., Valeev, E., Polly, R., Manby, F.R.: Analysis of the errors in explicitly correlated electronic structure theory. Phys. Chem. Chem. Phys. 7, 2710–2713 (2005)CrossRefGoogle Scholar
  23. 23.
    Dunning, T.H.: Gaussian-basis sets for use in correlated molecular calculations. 1. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989)ADSCrossRefGoogle Scholar
  24. 24.
    Dunning, T.H.: A road map for the calculation of molecular binding energies. J. Phys. Chem. A 104, 9062–9080 (2000)CrossRefGoogle Scholar
  25. 25.
    Dunning, T.H., Peterson, K.A.: Approximating the basis set dependence of coupled cluster calculations: evaluation of perturbation theory approximations for stable molecules. J. Chem. Phys. 113, 7799–7808 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    Bagus, P.S., Sousa, C., Illas, F.: Consequences of electron correlation XPS binding energies: representative case for C(1s) and O(1s) XPS of CO. J. Chem. Phys. 145, 144303 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    Foglia, N.O., Morzan, U.N., Estrin, D.A., Scherlis, D.A., Lebrero, M.C.G.: Role of core electrons in quantum dynamics using TDDFT. J. Chem. Theory. Comput. 13, 77–85 (2017)CrossRefGoogle Scholar
  28. 28.
    Tolbatov, I., Chipman, D.M.: Comparative study of Gaussian basis sets for calculation of core electron binding energies in first row hydrides and glycine. Theor. Chem. Acc. 133, 1560 (2014)CrossRefGoogle Scholar
  29. 29.
    Takahata, Y.: Substituent effects in chain and ring pi-systems studied by core-electron binding energies calculated by density functional theory. Comput. Theor. Chem. 978, 77–83 (2011)CrossRefGoogle Scholar
  30. 30.
    Takahata, Y.: Substituent effect in 1-X-decanes and 3-X-gonanes based on core-electron binding energies calculated with density-functional theory. Comput. Theor. Chem. 1024, 9–14 (2013)CrossRefGoogle Scholar
  31. 31.
    Neese, F.: ORCA program system. Comput. Mol. Sci. 2, 73–78 (2012)CrossRefGoogle Scholar
  32. 32.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    Lide, D.R. (ed.): In: Chemical Rubber Company Handbook of Chemistry and Physics, 79th edn. CRC Press, Boca Raton (1998)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsAdiyaman UniversityAdiyamanTurkey
  2. 2.Department of Physics EngineeringHacettepe UniversityAnkaraTurkey

Personalised recommendations