Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 10, pp 3111–3117 | Cite as

Formation of As–As Interlayer Bonding in the cT Phase of EuFe2As2 and CeFeAsO Under Pressure from First Principle

  • R. Mahesh
  • P. Venugopal ReddyEmail author
Original Paper


The electronic band structure and structural phase stability of EuFe2As2 and CeFeAsO compounds were studied using the full-potential linearized augmented plane wave (FP-LAPW) method implemented using WIEN2k. To calculate the structural stability and phase transition of these compounds, the total energies have been computed as a function of reduced volumes and fitted with the Birch–Murnaghan equation. The calculated lattice parameters are found to be in agreement with the available experimental data. The present results show that EuFe2As2 and CeFeAsO compounds undergo structural phase transition from body-centered tetragonal (BCT) into collapsed tetragonal (cT) and tetragonal (T) into cT phase under pressure. The calculated phase transition pressures are in agreement with recent experimental data. The calculated valence charge density of collapsed tetragonal phase reveals that As–As interactions found to be stronger under pressure.


Rare-earth transition metal pnictides Electronic structure Ab initio method Structural phase stability Phase transition 



The authors are thankful to Professors Peter Blaha, Karlheinz Schwarz, Georg Madsen, Dieter Kvasnicka, and Joachim Luitz, Institute of Physical and Theoretical Chemistry, Vienna University of Technology, Getreidemarkt 9/156, A-1060, Vienna, Austria, for providing the WIEN2k code.


  1. 1.
    Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: J. Am. Chem. Soc. 130, 3296 (2008)CrossRefGoogle Scholar
  2. 2.
    Norman, M.: Physics 1, 21 (2008)CrossRefGoogle Scholar
  3. 3.
    Rotter, M., Tegal, M., Johrendt, D.: Phys, Rev. Lett. 101, 107006 (4p) (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Sasmal, K., Lv, B., Lorenz, B., Guloy, A.M., Chen, F., Xue, X.Y., Chu, C.W.: Phys. Rev. Lett. 101, 107007 (4p) (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Ren, Z. -A., Lu, W., Yang, J., Yi, W., Shen, X. -L., Li, Z. -C., Che, G. -C., Dong, X. -L., Sun, L. -L., Zhou, F., Zhao, Z. -X.: Chin. Phys. Lett. 25, 2215 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Sefat, A.S., Huq, A., McGuire, M.A., Jin, R., Sales, B.C., Mandrus, D.: Phys. Rev. B 78, 104505 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Prakash, J., Singh, S.J., Patnaik, S., Ganguli, A.K.: Solid State Commun. 149, 181 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Zhao, L.D., Berarden, D., Byl, C., Pinsard-Gaudart, L., Dragoe, N.: J. Phys.: Condens. Matter 22, 115701 (2010)ADSGoogle Scholar
  9. 9.
    Okada, H., Igawa, K., Takahashi, H., Kamihara, Y., Hirano, M., Matsubayashi, K., Uwatoko, Y.: J. Phys. Soc. Jpn. 77, 113712 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Matsubayashi, K., Katayama, N., Ohgushi, K., Yamada, A., Munakata, K., Matsumoto, T., Uwatoko, Y.: J. Phys. Soc. Jpn. 78, 073706 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Ishikawa, F., Eguchi, N., Kodama, M., Fujimaki, K., Einaga, M., Ohmura, A., Nakayama, A., Mitsuda, A., Yamada, Y.: Phys. Rev. B 79, 172506 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Duncan, W.J., Welzel, O.P., Harrison, C., Wang, X.E., Chen, X.H., Grosche, F.M., Niklowitz, P.G.: J. Phys: Cons. Matter 22, 052201 (2010)ADSGoogle Scholar
  13. 13.
    Uhoya, W.O., Montgomery, J.M., Tsoi, G.M., Vohra, Y.K., McGuire, M.A., Sefat, A.S., Sales, B.C., Weir, Samuel T.: J. Phys.: Condens. Matter 23, 122201 (6pp) (2011)ADSGoogle Scholar
  14. 14.
    Uhoya, W., Stemshorn, A., Tsoi, G., Vohra, Y.K., Sefat, A.S., Sales, B.C., Hope, K.M., Weir, S.T.: Phys. Rev. B 82, 144118 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Yildirim, T.: Phys. Rev. Lett. 102, 037003 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Kobayashi, H.isao, Ikeda, S., Sakaguchi, Y., Yoda, Y., Nakamura, H., Machida, M.: J. Phys: Condens. Matter 25, 6pp (2013)Google Scholar
  17. 17.
    Kumar, R.S., Antonio, D., Kanagaraj, M., Arumugam, S., Prakash, J., Sinogeikin, S., Thakur, G.S., Ganguli, A.K., Cornelius, A., Zhao, Y.: Appl. Phys. Lett. 98, 012511 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties. Karlheinz Schwarz, Technical Universitat Wien, Wien (2001)Google Scholar
  19. 19.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    Birch. F.: Phys. Rev. 71, 809 (1947)ADSCrossRefGoogle Scholar
  21. 21.
    Born, M., Huang, K.: . In: Dynamical theory of crystal lattices. Clarendon, Oxford (1954)Google Scholar
  22. 22.
    Colonna, N., Profeta, G., Continenza, A., Massidda, S.: Phys. Rev. B 83, 094529 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Ni, B., Abd-Elmeguid, N.M., Micklitz, H., Sanchez, J.P., Vulliet, P., Johrendt, D.: Phys. Rev. B 63(R), 100102 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    Hoffmann, R., Zheng, C.: J. Phys. Chem. 89, 4175 (1985)CrossRefGoogle Scholar
  25. 25.
    Yildirim, T. et al.: Phys. Rev. Lett. 102, 037003 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsVidya Jyothi Institute of TechnologyHyderabadIndia
  2. 2.Department of PhysicsOsmania UniversityHyderabadIndia

Personalised recommendations