Skip to main content
Log in

Magnetic Transition in Nonmetal N- and F-Doping g-ZnO Monolayer with Different Concentrations

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this paper, the geometrical, electronic, and magnetic properties of nonmetal (N, F) atom doping g-ZnO monolayer supercell forming 6.25, 12.5, and 25% concentrations have been investigated comprehensively using the first-principles method. The structural optimization implies that N or F atom doping g-ZnO monolayer causes the structural distortion around the doping atoms. Doping g-ZnO monolayer with one N atom is FM semiconductor, and the total magnetic moment is 0.651 μB. The N–N-pair or two N–N-pair doping g-ZnO is AFM states. The total magnetic moments mainly originate from the spin polarization of the doping atom N, and the rest comes from the nearest Zn and O atoms. Doping g-ZnO with F atoms with the concentrations of 6.25, 12.5, and 25% all are nonmagnetic semiconductor. The F-doping can adjust energy band gap, which increases with the increase of F concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhao, Y.F., Yang, H.Y., Yang, B., Liu, Z.X., Yang, P.: Sol. Energy 140, 21 (2016)

    Article  ADS  Google Scholar 

  2. Tabassum, S., Yamasue, E., Okumura, H., Ishihara, K.N.: Appl. Surf. Sci. 377, 355 (2016)

    Article  ADS  Google Scholar 

  3. Su, Y.L., Zhang, Q.Y., Zhou, N., Ma, C.Y., Liu, X.Z., Zhao, J.J.: Solid State Commun. 250, 123 (2017)

    Article  ADS  Google Scholar 

  4. Tan, C.L., Sun, D., Xu, D.S., Tian, X.H., Huang, Y.W.: Ceram. Int. 42, 10997 (2016)

    Article  Google Scholar 

  5. Tusche, C., Meyerheim, H.L., Kirschner, J.: Phys. Rev. Lett. 99, 026102 (2007)

    Article  ADS  Google Scholar 

  6. Deng, X., Yao, K., Sun, K., Li, W.X., Lee, J., Matranga, C.: J. Phys. Chem. C 117, 11211 (2013)

    Article  Google Scholar 

  7. Claeyssens, F., Freeman, C.L., Allan, N.L., Sun, Y., Ashfolda, M.N.R., Harding, J.H.: J. Mater. Chem. 15, 139 (2005)

    Article  Google Scholar 

  8. Hur, T.B., Hwang, Y.H., Kima, H.K., Park, H.L.: J. Appl. Phys. 96, 1740 (2004)

    Article  ADS  Google Scholar 

  9. Wu, H.M., Wu, X.J., Pei, Y., Zeng, X.C.: Nano Res. 4, 233 (2011)

    Article  Google Scholar 

  10. Botello-Méndez, A.R., López-Urías, F., Terrones, M., Terrones, H.: Nano lett. 8, 1562 (2008)

    Article  ADS  Google Scholar 

  11. Botello-Méndez, A.R., López-Urías, F., Terrones, M., Terrones, H.: Nano Res. 1, 420 (2008)

    Article  Google Scholar 

  12. Sarkar, D., Ghosh, C.K., Chattopadhyay, K.K.: Appl. Surf. Sci. 418, 252 (2017)

    Article  ADS  Google Scholar 

  13. Guo, H.Y., Zhao, Y., Lu, N., Kan, E., Zeng, X.C., Wu, X.J., Yang, J.L.: J. Phys. Chem. C 116, 11336 (2012)

    Article  Google Scholar 

  14. Ren, J., Zhang, H., Cheng, X.L.: Int. J. Quantum Chem. 113, 2243 (2013)

    Article  Google Scholar 

  15. He, A.L., Wang, X.Q., Wu, R.Q., Lu, Y.H., Feng, Y.P.: J. Phys.: Condens. Matter 22, 175501 (2010)

    ADS  Google Scholar 

  16. Schmidt, T.M., Miwa, R.H., Fazzio, A.: Phys. Rev. B 81, 195413 (2010)

    Article  ADS  Google Scholar 

  17. Wu, M.Y., Sun, D., Tan, C.L., Tian, X.H., Huang, Y.W.: Materials 10, 359 (2017)

    Article  ADS  Google Scholar 

  18. Tan, C.L., Sun, D., Xu, D.S., Tian, X.H., Huang, Y.W.: Ceram. Int. 42, 10997 (2006)

    Article  Google Scholar 

  19. Tan, C.L., Sun, D., Zhou, L., Tian, X.H., Huang, Y.W.: Superlattices Microstruct 98, 416 (2016)

    Article  ADS  Google Scholar 

  20. Cheng, H.X., Wang, X.X., Hu, Y.W., Song, H.Q., Huo, J.R., Li, L., Qian, P.: J. Solid State Chem. 244, 175 (2016)

    Article  ADS  Google Scholar 

  21. He, A.L., Wang, X.Q., Wu, R.Q., Lu, Y.H., Feng, Y.P.: J. Phys.: Condens. Matter 22, 175501 (2010)

    ADS  Google Scholar 

  22. Schmidt, T.M., Miwa, R.H., Fazzio, A.: Phys. Rev. B 81, 195413 (2010)

    Article  ADS  Google Scholar 

  23. Kresse, G., Furthmüller, J.: Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  24. Kresse, G., Joubert, D.: Phys. Rev. B Condens. Matter Mater. Phys. 59, 1758 (1999)

    Article  ADS  Google Scholar 

  25. Adolph, B., Furthmüller, J., Bechstedt, F.: Phys. Rev. B 63, 125108 (2001)

    Article  ADS  Google Scholar 

  26. Blöchl, P.E.: Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  27. Kohn, W., Sham, L.J.: Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  28. Hammer, B., Hansen, L.B., Nørskov, J.K.: Phys. Rev. B 59, 7413 (1999)

    Article  ADS  Google Scholar 

  29. Zhang, Y.H., Zhang, M.L., Zhou, Y.C., Zhao, J.H., Fang, S.M., Li, F.: J. Mater. Chem. A 2, 13129 (2014)

    Article  Google Scholar 

  30. Tu, Z.C.: J. Comput. Theor. Nanosci. 7, 1182 (2010)

    Article  Google Scholar 

  31. Topsakal, M., Cahangirov, S., Bekaroglu, E., Ciraci, S.: Phys. Rev. B: Condens. Matter Mater. Phys. 80, 235119 (2009)

    Article  ADS  Google Scholar 

  32. Guo, H.Y., Zhao, Y., Lu, N., Kan, E., Zeng, X.C., Wu, X.J., Yang, J.L.: J. Phys. Chem. C 116, 11336 (2012)

    Article  Google Scholar 

  33. Deng, S.H., Duan, M.Y., Xu, M., He, L.: Physica B 406, 2314 (2011)

    Article  ADS  Google Scholar 

  34. Zhang, Y.G., Zhang, G.B., Wang, Y.X.: J. Appl. Phys. 109, 063510–1 (2011)

    Article  ADS  Google Scholar 

Download references

Funding

The authors acknowledge computational supports from the National Natural Science Foundation of China (Grant Nos. 11247229 and 11547118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Qing Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, JQ., Chen, GX., Zhang, JM. et al. Magnetic Transition in Nonmetal N- and F-Doping g-ZnO Monolayer with Different Concentrations. J Supercond Nov Magn 31, 3133–3139 (2018). https://doi.org/10.1007/s10948-017-4541-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4541-3

Keywords

Navigation