Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 10, pp 3183–3192 | Cite as

Structural, Elastic, Thermodynamic, Electronic, and Magnetic Investigations of Full-Heusler Compound Ag2CeAl: FP-LAPW Method

  • Friha Khelfaoui
  • Mohammed AmeriEmail author
  • Djillali Bensaid
  • Ibrahim Ameri
  • Yarub Al-Douri
Original Paper


Structural, elastic, thermodynamic, electronic, and magnetic properties of the full-Heusler compound Ag2CeAl were determined using generalized gradient approximation with exchange-correlation functional GGA (PBEsol) with spin-orbit coupling (SOC) correction. The elastic modulus and their pressure dependence are calculated. From the elastic parameter behavior, it is inferred that this compound is elastically stable and ductile in nature. Through the quasi-harmonic Debye model, in which the phononic effect is considered the effect of pressure P (0 to 50) and temperature T (0 to 1000) on the lattice constant, the elastic parameters, bulk modulus B, heat capacity and thermal expansion α, internal energy U, entropy S, Debye temperature 𝜃D, Helmholtz free energy A, and Gibbs free energy G are investigated. The thermodynamic properties show that the compound Ag2CeAl is a heavy fermion material. The density of state (DOS), magnetic momentum, and band structure are computed, to investigate the magnetic and metallic characteristics. The calculated polarization of the compound is 77.34%. The obtained results are the first predictions of the physical properties for the rare-earth-based (Ce) full-Heusler Ag2CeAl.


Full-Heusler alloys Magnetic properties First-principles calculations Spin-polarized electronic bands 


  1. 1.
    Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2K, an Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties. Vienna University of Technology, Vienna (2001)Google Scholar
  2. 2.
    Wong, K.M., Alay-e-Abbas, S.M., Fang, Y., Shaukat, A., Lei, Y.: J. Appl. Phys. 114, 034901 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Zutic, I., Fabian, J., Sarma, S.D.: Rev. Mod. Phys. 76, 323–410 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Perdew, J.P., Wang, Y.: Phys. Rev. B 45, 13244 (1992)ADSCrossRefGoogle Scholar
  5. 5.
    Perdew, J.P., Burke, S., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    Blanco, M.A., Francisco, E.: Comput. Phys. Commun. 158, 57 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    Galanakis, I., Dederichs, P.H., Papanikolaou, N.: Phys. Rev. B 66, 134428 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Galanakis, I., Dederichs, P.H., Papanikolaou, N.: Phys. Rev. B 66, 174429 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Galanakis, I.: J. Phys. Condens. Matter 16, 3089 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Zhang, M., Dai, X., Hu, H., Liu, G., Cui, Y., Liu, Z., Chen, J., Wang, J., Wu, G.: J. Phys. Condens. Matter 15, 7891 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Zhang, M., Liu, Z., Hu, H., Liu, G., Cui, Y., Wu, G., Brück, E., de Boer, F.R., Li, Y.: J. Appl. Phys. 95, 7219 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Birch, F.: Phys. Rev. 71, 809–24 (1947)ADSCrossRefGoogle Scholar
  13. 13.
    Mehl, M.J., Klein, B.K., Papaconstantopoulos, D.A.: Intermetallic Compounds: Principle and Practice. In: Westbrook, J.H., Fleischeir, R.L. (eds.) Principles, vol. I. Wiley (1995)Google Scholar
  14. 14.
    Jong, J.-Y., et al.: J. Alloys Compd. 693, 462e467 (2017)CrossRefGoogle Scholar
  15. 15.
    Lantri, T., Bentata, S., Bouadjemi, B.: J. Magn. Magn. Mater. 419, 74–83 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Akriche, A., Bouafia, H.: J. Magn. Magn. Mater. 422, 13–19 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    Abada, A., Amara, K.: J. Magn. Magn. Mater. 388, 59–67 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Hu, W., Zou, L.: J. Alloys Compd. 612, 356–360 (2014)Google Scholar
  19. 19.
    Voigt, W.: Lehrbush Der Kristallphysik. Taubner, Leipzig (1928)Google Scholar
  20. 20.
    Schreiber, E., Anderson, O.L., Soga, N.: Elastic Constants and Their Measurements. Mcgraw-hill, New York (1973)Google Scholar
  21. 21.
    Born, M.: Proc. Cambridge Philos. Soc. 36, 160 (1940)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Born, M., Huang, k.: Oxford university press (1956)Google Scholar
  23. 23.
    Tvergaard, V., Hutchinson, J.W.: J. Am. Ceram., Soc. 71, 157.3 (1988)CrossRefGoogle Scholar
  24. 24.
    Pugh, S.F.: Philos. Mag. 45, 823 (1954)CrossRefGoogle Scholar
  25. 25.
    Wachter, P., Filzmoser, M., Rebiant, J.: Physica B 293, 199 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    Voigt, W.: Semiconductors and Semimetals. Lehrbuch der Kristall-physik. Leipzing, Taubner (1929)Google Scholar
  27. 27.
    Schreiber, E., Anderson, O.L., Soga, N.: Elastic Constants and Their Measurements. Mc Graw-Hill, New York (1973)Google Scholar
  28. 28.
    Peng, F., Fu, H.Z., Cheng, X.L.: Physica B 400, 83 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Peng, F., Fu, H.Z., Yang, X.D.: Solid State Commun. 145, 91 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    Peng, F., Fu, H.Z., Yang, X.D.: Physica B 403, 2851 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    Ameri, M., Abdelmounaim, B., Sebane, M., Khenata, R., Varshney, D., Bouhafs, B., Ameri, I.: Mol. Simul. 40(15), 1236–1243 (2013)CrossRefGoogle Scholar
  32. 32.
    Ameri, M., Slamani, A., Abidri, B., Ameri, I., al-douri, Y., Bouhafs, B., Varshney, D., Adjadj, A., Louahala, N.: Mater. Sci. Semicond. Process. 27, 379 (2014)CrossRefGoogle Scholar
  33. 33.
    Fine, M.E., Brown, L.D., Marcus, H.L.: Scr. Metall. 18, 951 (1984)CrossRefGoogle Scholar
  34. 34.
    Galanakis, I., Mavropoulos, P.h., Dederichs, P.H.: J. Phys. D. Appl. Phys. 39, 765 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Friha Khelfaoui
    • 1
    • 2
  • Mohammed Ameri
    • 1
    • 3
    Email author
  • Djillali Bensaid
    • 1
    • 4
  • Ibrahim Ameri
    • 3
  • Yarub Al-Douri
    • 3
  1. 1.Laboratory Physico-Chemistry of Advanced MaterialsUniversity of Djillali LiabesSidi Bel AbbèsAlgeria
  2. 2.Faculty of Sciences, Department of PhysicsDr. Tahar Moulay University of SaidaSaidaAlgeria
  3. 3.Physics Department, Faculty of ScienceUniversity of Sidi-Bel-AbbesSidi Bel AbbèsAlgeria
  4. 4.Institute of Science and TechnologyUniversity BELHADJ BouchaibAin-TemouchentAlgeria

Personalised recommendations