Skip to main content
Log in

Theoretical Studies on Magnetic Structures, Hysteresis Loops and Size Effects of a Pair of Frustrated Double-Walled Nanotubes

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We propose a theoretical quantum model and derive a set of analytic formulas to study the physical properties of a pair of double-walled magnetic nanotubes. The Heisenberg exchange parameters between the two walls of the nanotubes are assumed to differ only in sign. Thus, in the absence of external magnetic field, our calculated macroscopic properties of this pair of nanotubes are almost precisely identical, exhibiting fascinating duality of the nanosystems and demonstrating the correctness of our theoretical model. The two spin systems are all frustrated, so that sudden changes in the macroscopic properties are observed around T M2 that is well below the transition temperature T M1. However, only the inner shell consisting of smaller A-type spins has been obviously affected. In the temperature range T M2 < T < T M1, this shell becomes semi-antiferromagnetic and its magnetization is considerably suppressed, whereas as temperature falls below T M2 the shell gradually restores its ferromagnetic nature. The longitudinal hysteresis behavior of such a double-waled nanotube is ferromagnetic-like below T M2, but antiferromagnetic-like in the temperature interval T M2 < T < T M1. Moreover, we find that the diameter of the nanotube has seemly no effects on its physical properties, whereas its length does affects the two temperatures slightly, and also its spin configuration at very low temperatures if the tube is sufficiently long. More importantly, the theoretical results presented in this paper can be precisely reproduced with the quantum computational method we develop in recent years, justifying the validity of the numerical approach once again.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gao, J.H., Zhan, Q.F., He, W., Sun, D.L., Cheng, Z.H.: Synthesis and magnetic properties of Fe3Pt nanowire arrays fabricated by electrodeposition. Appl. Phys. Lett. 86, 232506 (2005)

    Article  ADS  Google Scholar 

  2. Peng, Y., Cullis, T., Mobus, G., Xu, X.J., Inkson, B.: Nanoscale characterization of CoPt/Pt multilayer nanowires. Nanotechnology 18, 485704 (2007)

    Article  Google Scholar 

  3. Hu, H.N., Chen, H.Y., Yu, S.Y.: Fabrication and magnetic properties of Co x Pd1−x composite nanowire. J. Magn. Magn. Matter. 299, 170 (2006)

    Article  ADS  Google Scholar 

  4. Schaaf, P., Zhang, K., Lange, C., Holz, A., Weisheit, M., Fähler, S.: Structure and anisotropy of epitaxial fcc FePt films. Appl. Surf. Sci. 253, 8107–8110 (2007)

    Article  ADS  Google Scholar 

  5. Krusin-Elbaum, L., Newns, D.M., Zeng, H., Derycke, V., Sun, J.Z., Sandtrom, R.: Room-temperature ferromagnetic nanotubes controlled by electron or hole doping. Nature 431, 672–676 (2004)

    Article  ADS  Google Scholar 

  6. Gao, C., Li, W., Morimoto, H., Nagaoka, Y., Maekawa, T.: Magnetic carbon nanotubes: synthesis by electrostatic self-assembly approach and application in bio-manipulations. J. Phys. Chem. B 110, 7213–7220 (2006)

    Article  Google Scholar 

  7. Sui, Y.C., Skomski, R., Sorge, K.D., Sellmyer, D.J.: Nanotube magnetism. Appl. Phys. Lett. 84, 1525–1527 (2004)

    Article  ADS  Google Scholar 

  8. Li, Y.L., Tang, S.L., Xie, R., Wang, Y., Yang, M., Gao, J.L., Xia, W.B., Du, Y.W.: Fabrication and magnetic properties of free-standing Ni nanotube arrays with controllable wall thickness. Appl. Phys. Lett. 100, 052402–052403 (2004)

    Article  ADS  Google Scholar 

  9. Zhou, D., Cai, L.H., Wen, F.S., Li, F.S.: Template synthesis and magnetic behavior of FeNi alloy nanotube arrays. Chin. J. Chem. Phys. 20, 821–825 (2007)

    Article  Google Scholar 

  10. Jang, J., Yoon, H.: Fabrication of magnetic carbon nanotubes using a metal-impregnated polymer precursor. Adv. Mater. 15, 2088–2091 (2003)

    Article  Google Scholar 

  11. Xie, J., Chen, L., Varadan, V.K., Yancey, J., Srivatsan, M.: The effects of functional magnetic nanotubes with incorporated nerve growth factor in neuronal differentiation of PC12 cells. Nanotechnology 19, 105101 (2008)

    Article  ADS  Google Scholar 

  12. Kim, I.T., Tannenbaum, R.: In: Marulanda, J.M.: (ed.) Electronic Properties of Carbon Nanotubes, (Janeza Trdine 9, 51000 Rijeka, Croatia, 2009), p. 33

  13. Bogani, L., Danieli, C., Biavardi, E., Bendiab, N., Barra, A.L., Dalcanale, E., Wernsdorfer, W., Cornia, A.: Single-molecule-magnet carbon-nanotube hybrids. Angew. Chem. 121, 760–764 (2009)

    Article  Google Scholar 

  14. Gul, H., Lu, W., Xu, P., Xing, J., Chen, J.: Magnetic carbon nanotube labelling for haematopoietic stem/progenitor cell tracking. Nanotechnology 21, 155101 (2010)

    Article  ADS  Google Scholar 

  15. Landeros, P., Suarez, O.J., Cuchillo, A., Vargas, P.: Equilibrium states and vortex domain wall nucleation in ferromagnetic nanotubes. Phys. Rev. B 79, 024404 (2009)

    Article  ADS  Google Scholar 

  16. Mi, B.Z., Wang, H.Y., Zhou, Y.: Theoretical investigations of magnetic properties of ferromagnetic single-walled nanotubes. J. Magn. Magn. Mater. 322, 952–958 (2010)

    Article  ADS  Google Scholar 

  17. Zaim, A., Kerouad, M., Amraoui, Y.E.: Magnetic properties of a ferrimagnetic core/shell nanocube Ising model: A Monte Carlo simulation study. J. Magn. Magn. Mater. 321, 1077–1083 (2009)

    Article  ADS  Google Scholar 

  18. Masrour, R., Bahmad, L., Hamedoun, M., Benyoussef, A., Hlil, E.K.: The magnetic properties of a decorated Ising nanotube examined by the use of the Monte Carlo simulations. Solid State Commun. 162, 53–56 (2013)

    Article  ADS  Google Scholar 

  19. Benhouria, Y., Essaoudi, I., Ainane, A., Ahuja, R., Dujardin, F.: Thermodynamic properties and hysteresis behaviors of a mixed spin-3/2 and spin-1/2 Ising double walled ferrielectric nanotubes: A Monte Carlo study. Superlattice Microstr. 75, 761–774 (2014)

    Article  ADS  Google Scholar 

  20. Liu, Z.S., Ian, H.: Physica E 85, 82–89 (2017)

    Article  ADS  Google Scholar 

  21. Liu, Z.S., Sechovský, V., Divis, M.: Magnetism of PrAl2 nanoparticle investigated with a quantum simulation model. J. Phys.: Condens. Matter 23, 016002 (2011)

    ADS  Google Scholar 

  22. Liu, Z.S., Sechovský, V., Divis, M.: Magnetism of DyNi2 B 2C nanoparticle investigated with a quantum simulation model. Phys. Status Solidi B 249, 202–208 (2012)

    Article  ADS  Google Scholar 

  23. Liu, Z.S., Ian, H.: Effects of Dzyaloshinsky-Moriya interaction on magnetism in nanodisks from a self-consistent approach. J. Nanopart. Res. 18, 9 (2016)

    Article  ADS  Google Scholar 

  24. Liu, Z.S., Ciftja, O., Ian, H.: Interplay of Dzyaloshinsky-Moriya and dipole-dipole interactions upon the vortical structures on nanodisks investigated by means of a quantum simulation approach. Physica E 90, 13–20 (2017)

    Article  ADS  Google Scholar 

Download references

Funding

Z.-S. Liu acknowledges the financial support provided by National Natural Science Foundation of China under grant No. 11274177 and by University of Macau. H. Ian is supported by the FDCT of Macau under grant 065/2016/A2, University of Macau under grant MYRG2014-00052-FST, and National Natural Science Foundation of China under Grant No. 11404415.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hou Ian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Ian, H. Theoretical Studies on Magnetic Structures, Hysteresis Loops and Size Effects of a Pair of Frustrated Double-Walled Nanotubes. J Supercond Nov Magn 31, 2411–2419 (2018). https://doi.org/10.1007/s10948-017-4476-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4476-8

Keywords

Navigation