Skip to main content

Advertisement

Log in

Theoretical Investigation of the Mechanical and Thermodynamic Properties of the Layered Yttrium Diborocarbides

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The mechanical, electronic, and thermodynamic properties of typical layered structure yttrium diborocarbides (YB2 C 2) were investigated by the density functional theory. The calculated lattice constants were slightly higher than the available experimental data. The elastic constants revealed that YB2 C 2 was mechanically stable. The bulk modulus (190.8 GPa), shear modulus (127.4 GPa), Young’s modulus (312.7 GPa), Poisson’s ratio (0.227), and Vickers hardness (18–19 GPa) were obtained, and the ductility, plasticity, and elastic anisotropy were further analyzed. The total and partial density of states were also calculated, indicating that the metallic character was mainly attributed to the contribution from Y-4d states and weakly hybridized with the 2p states from the B and C atoms. Finally, we obtained the Debye, melting, and the superconducting transition temperatures of YB2 C 2 as 824, 2239 and 2.38 K, respectively. Our study showed that YB2 C 2 offers potential in superconductivity or ultrahigh temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Duijn, J., van Attfield, J.P., Suzuki, K.: Magnetic structures of the rare-earth borocarbides R B2 C 2(R = Tb, Dy, Ho, and Er). Phys. Rev. B 62, 6410 (2000)

    Article  ADS  Google Scholar 

  2. Albert, B., Schmitt, K.: CaB2 C 2: reinvestigation of a semiconducting boride carbide with a layered structure and an interesting boron/carbon ordering scheme. Inorg. Chem 38, 6159 (1999)

    Article  Google Scholar 

  3. Duijn, J., van Suzuki, K., Attfield, J.P.: Boron-carbon order in CeB2 C 2. Angew. Chem. Int. Ed. 39, 365 (2000)

    Article  Google Scholar 

  4. Bauer, J., Bars, O.: The ordering of boron and carbon atoms in the LaB2 C 2 structure. Acta Cryst. B36, 1540 (1980)

    Article  Google Scholar 

  5. Bauer, J., Halet, J.-F., Saillard, J.-Y.: Rare earth metal borocarbides examples of coordination compounds in solid-state chemistry. Coordin. Chem. Rev. 723, 178–180 (1998)

    Google Scholar 

  6. Burdett, J.K., Canadell, E., Hughbanks, T.: Symmetry control of the coloring problem: the electronic structure of MB2 C 2 (M = Ca, La,...) J. Am. Chem. SOC. 108, 3971 (1986)

    Article  Google Scholar 

  7. Haino, M., Tobo, A., Onodera, H.: Y-dilution effects on magnetic properties of anomalous antiferromagnet TbB2, C 2. J. Phys. Soc. Jpn. 74, 1838 (2005)

    Article  ADS  Google Scholar 

  8. Bauer, J., Nowotny, H.: Der dreistoff Yttrium-Bor-Kohlenstoff. Monatsh. Chem. 102, 1129 (1971)

    Article  Google Scholar 

  9. Sakai, T., Adachi, G.-Y., Shiokawa, J: Electrical properties of rare earth diborodicarbides, (RB2 C 2-type layer compounds). J. Less-Common Met. 84, 107 (1982)

    Article  Google Scholar 

  10. Khmelevskyi, S., Mohn, P., Redinger, J., Michor, H.: Electronic structure of the layered diboride dicarbide superconductor YB2 C 2. Supercond. Sci. Technol. 18, 422 (2005)

    Article  ADS  Google Scholar 

  11. Hillier, A.D., Manuel, P., Adroja, D.T., Bewley, R.I., Rainford, B.D.: A study of CeB2 C 2 using inelastic neutron scattering. Phys. B 479, 378–380 (2006)

    Google Scholar 

  12. Hillier, A.D., Manuel, P., Adroja, D.T., Bewley, R.I., Rainford, B.D.: A study of the antiferroquadrupolar ordering in HoB2 C 2 through inelastic neutron scattering. J. Magn. Magn. Mater. 310, 757 (2007)

    Article  ADS  Google Scholar 

  13. Ohoyama, K., Indoh, K., Tobo, A., Kaneko, K., Onodera, H., Yamaguchi, Y.: Anomalous magnetic scattering in tetragonal RB2 C 2 (R = rare earth) observed by means of neutron diffraction. J. Phys.: Condens. Matter 15, S2127 (2003)

    ADS  Google Scholar 

  14. Onodera, H., Yamauchi, H., Yamaguchi, Y.: Anomalous magnetic phase diagrams of HoB2 C 2: antiferroquadrupolar ordering in the magnetic phase. J. Phys. Soc. Jpn. 68, 2526 (1999)

    Article  ADS  Google Scholar 

  15. Yan, H.Y., Zhang, M.G., Wei, Q., Guo, P.: Ab initio studies of ternary semiconductor BeB2 C 2. Comp. Mater. Sci. 68, 174 (2013)

    Article  Google Scholar 

  16. Onimaru, T., Onodera, H., Ohoyama, K., Yamauchi, H., Yamaguchi, Y.: Neutron powder diffraction on Ce11 B 2 C 2 and Nd11 B 2 C 2: a new model for the tetragoanl crystal structure. J. Phys. Soc. Jpn. 68, 2287 (1999)

    Article  ADS  Google Scholar 

  17. Roy, L.E., Hughbanks, T.: A tight-binding method for predicting magnetic ordering in Gd-containing solids: application to GdB2 C 2. J. Phys. Chem. B110, 20290 (2006)

    Article  Google Scholar 

  18. Reckeweg, O., DiSalvo, F.J.: Different structural models of YB2 C 2 and GdB2 C 2 on the basis of single-crystal x-ray data. Z. Naturforsch. 69B, 289 (2014)

    Google Scholar 

  19. Michor, H., Scheidt, E.W., Manalo, S., Müller, M., Bauer, E., Hilscher, G.: Superconductivity in layered YB2 C 2. J. Phys.: Conf. Ser. 150, 052160 (2009)

    Google Scholar 

  20. Zhao, G.R., Chen, J.X., Li, Y.M., Li, M.S.: YB2 C 2: A machinable layered ternary ceramic with excellent damage tolerance. Scr. Mater. 124, 86 (2016)

    Article  Google Scholar 

  21. Laasonen, K., Car, R., Lee, C., Vanderbilt, D.: Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Phys. Rev. B 43, 6796(R) (1991)

    Article  ADS  Google Scholar 

  22. Perdew, J.P., Burke, K., Wang, Y.: Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 54(23), 16533 (1991)

    Article  ADS  Google Scholar 

  23. Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Refson, K., Payne, M.C.: First principles methods using CASTEP. Z. Kristallogr. 220, 567 (2005)

    Google Scholar 

  24. Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X.L., Burke, K.: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008)

    Article  ADS  Google Scholar 

  25. Broyden, C.G.: The convergence of a class of double-rank minimization algorithms: 2. The new algorithm. J. Inst. Math. Appl. 6, 222 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fletcher, R.: A new approach to variable metric algorithms. Comput. J. 13, 317 (1970)

    Article  MATH  Google Scholar 

  27. Goldfarb, D.: A family of variable-metric methods derived by variational means. Math. Comput. 24, 23 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shanno, D.F.: Conditioning of quasi-Newton methods for function minimization. Math. Comput. 24, 647 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  29. Born, M., Huang, K.: Dynamical Theory of Crystal Lattices. Clarendon, Oxford (1954)

    MATH  Google Scholar 

  30. Chen, H.C., Yang, L.J., Long, J.P.: First-principles investigation of the elastic, Vickers hardness and thermodynamic properties of Al-Cu intermetallic compounds. Superlattice Microst. 79, 156 (2015)

    Article  Google Scholar 

  31. Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. 65, 349 (1952)

    Article  ADS  Google Scholar 

  32. Zhang, B.L.: Prediction of novel ultra-incompressibility compounds TM2B (TM = Mo, W, Re and Os) by first principles calculations. Phil. Mag. 97, 1729 (2017)

    Article  ADS  Google Scholar 

  33. Pugh, S.F.: XCII. Relations Between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dubl. Phil. Mag. 45, 823 (1954)

    Article  Google Scholar 

  34. Pettifor, D.: Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345 (1992)

    Article  Google Scholar 

  35. Frantsevich, I.N., Voronov, F.F., Bokuta, S.A.: Elastic constants and elastic moduli of metals and insulators handbook, ed. I. N. Frantsevich (Naukova Dumka, Kiev, 1983), pp. 60–180

  36. Gao, F.M.: Theoretical model of intrinsic hardness. Phys. Rev. B 73, 132104 (2006)

    Article  ADS  Google Scholar 

  37. Jiang, X., Zhao, J.J., Jiang, X.: Correlation between hardness and elastic moduli of the covalent crystals. Comp. Mater. Sci. 50, 2287 (2011)

    Article  Google Scholar 

  38. Teter, D.M.: Computational alchemy: the search for new superhard materials. MRS Bull. 23, 22 (1998)

    Article  Google Scholar 

  39. Chen, X.Q., Niu, H.Y., Li, D.Z., Li, Y.Y.: Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19, 1275 (2011)

    Article  Google Scholar 

  40. Ranganathan, S.I., Ostoja-Starzewski, M.: Universal elastic anisotropy index. Phys. Rev. Lett. 101, 055504 (2008)

    Article  ADS  Google Scholar 

  41. Nye, J.F.: Physical properties of crystals, p 145. Oxford University Press Inc., New York (1985)

    Google Scholar 

  42. Anderson, L.: A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids. 24, 909 (1963)

    Article  ADS  Google Scholar 

  43. Fine, M.E., Brown, L.D., Marcus, H.L.: Elastic constants versus melting temperature in metals. Scr. Metall. 18, 951 (1984)

    Article  Google Scholar 

  44. Mcmillan, W.L.: Transition temperature of strong-coupled superconductors. Phys. Rev. 167(2), 331 (1968)

    Article  ADS  Google Scholar 

  45. Ram, S., Kanchana, V., Vaitheeswaran, G., Svane, A., Dugdale, S.B., Christensen, N.E.: Electronic topological transition in LaSn3 under pressure. Phys. Rev. B 85, 174531 (2012)

    Article  ADS  Google Scholar 

  46. Bennemann, K.H., Garland, J.W.: Theory for superconductivity in d-band metals. AIP Conf. Proc. 4, 103 (1972)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yujian Huang or Tao Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Hong, T. & Yang, Y. Theoretical Investigation of the Mechanical and Thermodynamic Properties of the Layered Yttrium Diborocarbides. J Supercond Nov Magn 31, 2373–2379 (2018). https://doi.org/10.1007/s10948-017-4450-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4450-5

Keywords

Navigation