Effect of Mo Doping at the B Site on Structural and Electrical Properties of Multiferroic BiFeO 3

  • Tahir Murtaza
  • Imran Ahmad Salmani
  • Javid Ali
  • Mohd Shahid Khan
Original Paper


The Mo-doped BiFe1−xMo x O3, where x =  0 and 0.6, samples were synthesised by the solid-state reaction method. Admirable ferroelectric and piezoelectric properties are expected on substituting solid solutions of bulk BFO with other oxide perovskite compounds. It offers an alternative and is an environment-friendly candidate for lead-free ferroelectric and piezoelectric devices. The prepared samples were investigated by XRD, Fourier transform infrared spectroscopy (FTIR), current density (JE) measurement, PE loop tracer and field emission scanning electron microscopy to examine their crystal structure, bonding nature, current density, ferroelectric hysteresis loop and surface morphology. The Mo-doped BFO shows a change in structure, increased grain size, reduction in current density and enhancement in the PE loop on doping Mo at the Fe site.


Multiferroics XRD PE FTIR JE 


  1. 1.
    Khomskii, D.: Physics 2, 20 (2009)CrossRefGoogle Scholar
  2. 2.
    Cheng, Z., Wang, X.: Phys. Rev. B 75, 172406 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Yang, C.-H., et al.: Phys. Chem. Chem. Phys. 14, 15953–15962 (2012)CrossRefGoogle Scholar
  4. 4.
    Yuan, G.L., Or, SW, Wang, Y.P., Liu, Z.G., Liu, J.M.: Solid State Commun. 138, 76–81 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Gl, Y., Or, S.W.: J Appl. Phys. 100, 024109 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Zheng, T., Wu, J.G.: J Mater. Chem. C 3(15), 3684–93 (2015)CrossRefGoogle Scholar
  7. 7.
    Walker, J., Budic, B., Bryant, P., Kurusingal, V., et al.: IEEE Trans. Ultrason. Ferr. 62, 83–7 (2015)CrossRefGoogle Scholar
  8. 8.
    Levin, I., Tucker, M.G., Wu, H., Provenzano, V., Dennis, C.L., et al.: Chem. Mater. 23, 2166–2175 (2011)CrossRefGoogle Scholar
  9. 9.
    Yuan, G.L., Or, S.W., Liu, J.M., Liu, Z.G.: Appl. Phys. Lett. 89, 052905 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Xu, Q., Zai, H., Wu, D., Qiu, T., Mx, X.: Appl. Phys. Lett. 95, 112510 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Kumar, M., Yadav, K.L.: J Appl. Phys. 100, 74111 (2006)CrossRefGoogle Scholar
  12. 12.
    Xu, Q., Zai, H., Wu, D., Tang, Y.K., Xu, M.X.: J Alloy Compd. 485, 13–6 (2009)CrossRefGoogle Scholar
  13. 13.
    Kumar, M., Yadav, K.L.: Appl. Phys. Lett. 91, 242901 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Rao, T.D., Kumari, A., Niranjan, M.K., Asthana, S.: Phys. B Condensed Matter 448, 267–72 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Jun, Y.K., Lee, S.B., Kim, M., Hong, S.: J Mater. Res. 22, 3397–403 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Jun, Y.K., Moon, W.T., Chang, C.M., et al.: Solid State Commun. 135, 133–7 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Pradhan, S.K.: J Mater. Sci. 24, 1720–6 (2013)Google Scholar
  18. 18.
    Yoo, Y.J., Hwang, J.S., Lee, Y.P., Park, J.S., Kang, J.H., Kim, J., et al.: J Appl. Phys. 114, 163902 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Ianculescu, A., Gheorghiu, F.P., Postolache, P., et al.: J. Alloy Compd. 504, 420 (2010)CrossRefGoogle Scholar
  20. 20.
    Rajasree, D., et al.: J Magn. Magn. Mater. 401, 129–137 (2016)CrossRefGoogle Scholar
  21. 21.
    Selvadurai, A.P.B., Pazhanivelu, V., Murugaraj, R.: J Supercond. Nov. Magn. 27, 839 (2014)CrossRefGoogle Scholar
  22. 22.
    Yan, F., Lai, M.-O., Lu, L.: J. Phys. Chem. C 114, 6994–6998 (2010)CrossRefGoogle Scholar
  23. 23.
    Dai, H.Y., Xue, R.Z., Chen, Z.P., Li, T., Chen, J., Xiang, H.W.: Ceram. Int. 40, 15617 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Tahir Murtaza
    • 1
  • Imran Ahmad Salmani
    • 1
  • Javid Ali
    • 1
  • Mohd Shahid Khan
    • 1
  1. 1.Department of PhysicsJamia Millia IslamiaNew DelhiIndia

Personalised recommendations