Advertisement

Investigation on the Current Transport Characteristics of SrTiO3/YBa2Cu3O7−x Heterostructure

  • JiQiang Jia
  • JianMin Li
  • GaoYang Zhao
Original Paper

Abstract

By the combined use of the sol-gel and pulsed laser deposition methods, the SrTiO3/YBa2Cu3O7−x (STO/YBCO) heterostructure was prepared on a LaAlO3 substrate. XRD results and φ scanning test showed that the prepared STO/YBCO heterostructure had good biaxial texture. Moreover, a Pt electrode was sputtered on the STO/YBCO heterostructure to investigate the current density-voltage (JV) characteristic curves of STO/YBCO in the 50–300 K temperature range. The results showed that the STO/YBCO heterostructure had good rectifying characteristics. With an applied positive bias voltage smaller than 3.7 V, the current density of the STO/YBCO heterostructure decreased with the decrease of temperature; for higher voltages, on the contrary, the current density increased with the decrease of temperature. When the YBCO experienced superconducting transition, the turn-on voltage (V t) changed suddenly due to the sudden opening of the superconducting energy gap of YBCO. The V t variation obtained from the experiment was essentially consistent with the known value of the YBCO superconducting energy gap.

Keywords

SrTiO3/YBa2Cu3O7−x Heterostructure JV curves Schottky barrier 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51372198 and No. 51672212).

References

  1. 1.
    Peña, V., Nemes, N., Visani, C., Bruno, F.Y., Arias, D., Sefrioui, Z., Leon, C., Te Velthuis, S.G.E., Hoffmann, A., Garcia-Hernandez, M., Martinez, J.L., Santamaría, J.: Spin dependent transport at oxide La0.7Ca0.3MnO3/YBa2Cu3O7 ferromagnet/superconductor interfaces. J. Ceram. Soc. 2, 3967 (2007)CrossRefGoogle Scholar
  2. 2.
    Perez, F., Baca, E., Saldarriaga, W., Morán, O., Shi, H., Lederman, D.: Correlation between ferromagnetism and superconductivity at interfaces of La2/3Ca1/3MnO3/YBa2Cu3O7−δ/La2/3Ca1/3MnO3 trilayers grown by dc sputtering. J. Supercond. Nov. Magn. 26, 2289 (2013)CrossRefGoogle Scholar
  3. 3.
    Liu, F. G., Lian, X. K., Hou, J., Xia, Y. D., Liu, W.: Barrier enhancement behavior in an Au/BiFeO3/ YBa2Cu3O7−δ/ SrTiO3 heterostructure with the magnetic field effect. J. Alloy. Compd. 619, 505 (2015)CrossRefGoogle Scholar
  4. 4.
    Aidam, R., Schneider, R.: Growth and characterization of Pb(Zr,Ti)O3 thin films and ferroelectric polarization charging of YBa2Cu3O7 thin films. Thin Solid Films 384, 1 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Kawashima, K., Christiani, G., Logvenov, G., Habermeier, H.-U.: Superconductivity in YBa2Cu3O7−d/ La1−xCaxMnO3 bilayers (x = 0.3, 0.45, 0.55 and 0.8). J. Supercond. Nov. Magn. 28, 1993 (2015)CrossRefGoogle Scholar
  6. 6.
    Crassous, A., Bernard, R., Fusil, S., Bouzehouane, K., Bourdais, D.L., Enouz-Vedrenne, S., Briatico, J., Bibes, M., Barthélémy, A., Villegas, J.E.: Nanoscale electrostatic manipulation of magnetic flux quanta in ferroelectric/superconductor BiFeO3/YBa2Cu3O7 heterostructures. Phys. Rev. Lett. 107, 247002 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Ahn, C.H., Gariglio, S., Paruch, P., Tybell, T., Antognazza, L., Triscone, J.-M.: Electrostatic modulation of superconductivity in ultrathin GdBa2Cu3O7−x films. Science 284, 1152 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    Van Keuls, F.W.V., Romanofsky, R.R., Bohman, D.Y., Bohman, D.Y., Winters, M.D., Miranda, F.A., Mueller, C.H., Treece, R.E., Rivkin, T.V., Galt, D.: (YBa2Cu3O7−δ,Au)/SrTiO3/LaAlO3 thin film conductor/ ferroelectric coupled microstripline phase shifters for phased array applications. Appl. Phys. Lett. 71, 3075 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    Zhao, G.Y., Lei, L., Liu, X.M., Chen, Y.Q.: Effect of copper content in precursor solution on the superconducting properties of YBCO films derived from low-fluorine solution. Phys. C 468, 2317 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Zhao, G. Y., Chen, Y. Q., Lei, L., Xue, R. Z.: Fabrication of YBa2Cu3O7−x superconducting films using low-fluorine-content solution. IEEE T. Appl. Supercon. 17, 40 (2007)CrossRefGoogle Scholar
  11. 11.
    Yang, Q.Q., Zhang, H., LingHu, K.H., Chen, X.G., Zhang, J.B., Nie, R.J., Wang, F.R., Deng, J.X., Wang, J.Y.: The transport properties in BiFeO3/YBCO heterostructures. J. Alloy. Compd. 646, 1133 (2015)CrossRefGoogle Scholar
  12. 12.
    Chung, Y.W., Weissbard, W.B.: Surface spectroscopy studies of the SrTiO3 (100) surface and the platinum-SrTiO3 (100) interface. Phys. Rev. B 20, 3456 (1979)ADSCrossRefGoogle Scholar
  13. 13.
    Lu, C.L., Wang, Y., You, L., Zhou, X., Peng, H.Y., Xing, G.Z., Chia, E.E.M., Panagopoulos, C., Chen, L., Liu, J.-M., Wang, J., Wu, T.: Superconducting gap induced barrier enhancement in a BiFeO3-based heterostructure. Appl. Phys. Lett. 97, 252905 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Yin, Y.W., Ding, J.F., Wang, J., Xie, L., Yu, Q.X., Li, X.G.: Current-voltage characteristics of La2−xSrxCuO4/Nb-doped SrTiO3 heterojunctions. J. Appl. Phys. 107, 053915 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Yang, H., Chen, B., Tao, K., Qiu, X.G., Xu, B., Zhao, B.R.: Temperature- and field-dependent leakage current of Pt/(Ba0.7Sr0.3)TiO3 interface. Appl. Phys. Lett. 83, 1611 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Sun, J.R., Xiong, C.M., Zhang, Y.Z., Shen, B.G.: Rectifying properties of theYBa2Cu3O7−δ/SrTiO3:Nb heterojunction. Appl. Phys. Lett. 87, 222501 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Advanced Materials Analysis and Test CenterXi’an University of TechnologyXi’anChina
  2. 2.School of Materials Science and EngineeringXi’an University of TechnologyXi’anChina

Personalised recommendations