Peculiarities of Magnetic States of Iron-Cobalt Coatings Formed on Aluminum by Plasma Electrolytic Oxidation

  • Petr Kharitonskii
  • Vladimir Rudnev
  • Elena Sergienko
  • Kamil Gareev
  • Ivan Tkachenko
  • Vera Morozova
  • Irina Lukiyanchuk
  • Maria Adigamova
  • Anatoly Frolov
  • Alexander Ustinov
Original Paper


Ferromagnetic oxide coatings were formed on aluminum alloy by the plasma-electrolytic oxidation technique in an electrolyte with colloidal particles of iron and cobalt hydroxides. Iron and cobalt are concentrated in the coating pores as a part of nanosized crystallites. The size of individual crystallites in the pores was ∼50–100 nm. The deficit of oxygen to form oxides in crystallites shows that the metals in the crystallites are predominantly in a reduced state. It is also possible that the metal or oxide nuclei are surrounded by oxide-hydroxide shells. The coatings obtained within 5 min have a high coercive force H c = 1300 Oe. A theoretical analysis of the magnetic properties of Fe-, Co-containing coatings has been performed using the model of clusters consisting of magnetostatically interacting particles. The theoretical value of the saturation magnetization and the experimental values of the coercive force can be explained with the presence of two phases in the nanoparticles: a large antiferromagnetic or ferromagnetic (hydroxides and/or oxides of iron and cobalt) and a small superparamagnetic (iron, cobalt, magnetite, maghemite).


Plasma electrolytic oxidation Fe-, Co-containing coatings Co-containing coatings Ferromagnetic properties Nanocrystallites Theoretical modeling 



The work was carried out within Russian State Theme No. 265-2014-001 and partially supported by grants of the Program “Far East” and the Russian Foundation for Basic Research No. 15-03-03271.


  1. 1.
    Roslyakov, I.V., Napol’skii, K.S., Eliseev, A.A., Lukashin, A.V., Chernyshov, D.Y.u., Grigor’ev, S.V.: Preparing magnetic nanoparticles with controllable anisotropy of functional properties within a porous matrix of alumina. Nanotechnol. Russ. 4, 176–181 (2009)CrossRefGoogle Scholar
  2. 2.
    Kovneristyi, Yu.K., Lazareva, I.Yu, Ravaeva, A.A.: Microwave absorbing materials. Nauka, Moscow. [in Russian] (1982)Google Scholar
  3. 3.
    Baran, W.: Magnetic-materials for energy transformators and static systems. Metall. 43, 845–852 (1989)Google Scholar
  4. 4.
    Ferreira, L.-M.-P., Bayraktar, E., Robert, M.-H., Miskioglu, I.C.: Optimization of magnetic and electrical properties of new aluminium matrix composite reinforced with magnetic nano iron oxide (Fe3O4). Proc. Soc. Exp. Mech. 7, 11–17 (2016)Google Scholar
  5. 5.
    Zhao, D., Huang, W.H., Rahaman, M.N., Day, D.E., Wang, D.P., Gu, Y.F.: Preparation and characterization of composite microspheres for brachytherapy and hyperthermia treatment of cancer. Mater. Sci. Eng. C-Mater. Biol. Appl. 32, 276–281 (2012)CrossRefGoogle Scholar
  6. 6.
    Bychkova, A.V., Sorokina, O.N., Rosenfeld, M.A., Kovarski, A.L.: Multifunctional biocompatible coatings on magnetic nanoparticles. Russ. Chem. Rev. 81, 1026–1050 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Jin, F.Y., Tong, H.H., Li, J., Shen, L.R., Chu, P.K.: Structure and microwave-absorbing properties of Fe-particle containing alumina prepared by micro-arc discharge oxidation. Surf. Coat. Technol. 201, 292–295 (2006)CrossRefGoogle Scholar
  8. 8.
    Gnedenkov, S.V., Sinebryukhov, S.L., Tkachenko, I.A., Mashtalyar, D.V., Ustinov, A.Y.u., Samohin, A.V., Tsvetkov, Yu.V.: Magnetic properties of surface layers formed on titanium by plasma electrolyte oxidation on titanium. Inorg. Mat. Appl. Res. 3, 151–156 (2012)CrossRefGoogle Scholar
  9. 9.
    Jagminas, A., Ragalevicius, R., Mazeika, K., Reklaitis, J., Jasulaitiene, V., Baltrūnas, D. J.: A new strategy for fabrication Fe2O3/SiO2 composite coatings on the Ti substrate. Solid State Electrochem. 14, 271–277 (2010)CrossRefGoogle Scholar
  10. 10.
    Rogov, A.B., Terleeva, O.P., Mironov, I.V., Slonova, A.I.: Iron-containing coatings obtained by microplasma method on aluminum with usage of homogeneous electrolytes. Appl. Surf. Sci. 258, 2761–2765 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Rogov, A.V.: Plasma electrolytic oxidation of A1050 aluminium alloy in homogeneous silicate-alkaline electrolytes with EDTA4− complexes of Fe, Co, Ni, Cu, La and Ba under alternating polarization conditions. Mater. Chem. Phys. 167, 136–144 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Rudnev, V.S., Ustinov, A.Y.u., Lukiyanchuk, I.V., Kharitonskii, P.V., Frolov, A.M., Tkachenko, I.A., Morozova, V.P.: Magnetoactive oxide layers formed on titanium by plasma-electrolytic technique. Prot. Met. Phys. Chem. Surf. 46, 566–572 (2010)CrossRefGoogle Scholar
  13. 13.
    Rudnev, V.S., Ustinov, A.Y.u., Lukiyanchuk, I.V., Kharitonskii, P.V., Frolov, A.M., Morozova, V.P., Tkachenko, I.A., Sergienko, V.I.: Magnetic properties of plasma electrolytic iron-containing oxide coatings on aluminum. Dokl. Phys. Chem. 428, 189–192 (2009)CrossRefGoogle Scholar
  14. 14.
    Rudnev, V.S., Adigamova, M.V., Lukiyanchuk, I.V., Ustinov, A.Y.u., Tkachenko, I.A., Kharitonskii, P.V., Frolov, A.M., Morozova, V.P.: The effect of the conditions of formation on ferromagnetic properties of iron-containing oxide coatings on titanium. Prot. Met. Phys. Chem. Surf. 48, 543–552 (2012)CrossRefGoogle Scholar
  15. 15.
    Rudnev, V.S., Adigamova, M.V., Lukiyanchuk, I.V., Ustinov, A.Y.u., Tkachenko, I.A., Kharitonskii, P.V., Frolov, A.M., Morozova, V.P.: The thermal effect on magnetic properties of iron-containing coatings formed on titanium by plasma-electrolytic oxidation. Prot. Met. Phys. Chem. Surf. 48, 671–677 (2012)CrossRefGoogle Scholar
  16. 16.
    Rudnev, V.S., Morozova, V.P., Lukiyanchuk, I.V., Tkachenko, I.A., Adigamova, M.V., Ustinov, A.Y.u., Kharitonskii, P.V., Frolov, A.M., Boev, S.A.: Magnetic properties of plasma-electrolytic iron-containing oxide coatings on aluminum alloy. Prot. Met. Phys. Chem. Surf. 49, 309–318 (2013)CrossRefGoogle Scholar
  17. 17.
    Chernenko, V.I., Snezhko, L.A., Papanova, I.I.: Coating fabrication by the anodic spark electrolysis. Khimia, Leningrad. [in Russian] (1991)Google Scholar
  18. 18.
    Yerokhin, A.L., Nie, X., Leyland, A., Matthews, A., Dowey, S.J.: Plasma electrolysis for surface engineering. Surf. Coat. Technol. 122, 73–79 (1999)CrossRefGoogle Scholar
  19. 19.
    Rakoch, A.G., Dub, A.V., Gladkova, A.A.: Light alloys anodization under different electrical conditions. Plasma and Electrolytic Nanotechnology, Staraya Basmannaya (2012). [in Russian]Google Scholar
  20. 20.
    Walsh, F.C., Low, C.T.J., Wood, R.J.K., Stevens, K.T., Archer, J., Poeton, A.R., Ryder, A.: Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys. Trans. Inst. Metal Finish. 87, 122–135 (2009)CrossRefGoogle Scholar
  21. 21.
    Kharitonskii, P.V., Frolov, A.M., Rudnev, V.S., Ustinov, A.Y.u., Lukiyanchuk, I.V., Morozova, V.P.: Magnetic properties of iron-containing coatings formed by plasma-electrolytic oxidation. Bull. Russ. Acad. Sci. Phys. 74, 1404–1406 (2010)CrossRefzbMATHGoogle Scholar
  22. 22.
    Rudnev, V., Ustinov, A., Lukiyanchuk, I., Kharitonskii, P., Frolov, A., Tkachenko, I., Adigamova, M.: Magnetic properties of plasma electrolytic iron-containing oxide coatings on aluminum and simulation of demagnetizing process. Solid State Phenom. 168–169, 289–291 (2011)Google Scholar
  23. 23.
    Kharitonskii, P.V., Frolov, A.M., Boev, S.A., Rudnev, V.S., Tkachenko, I.A., Morozova, V.P., Lukiyanchuk, I.V., Adigamova, M.V., Ustinov, A.: Influence of magnetostatic interactions on magnetization process of iron-containing coatings, produced using the plasma electrolytic oxidation method. Solid State Phenom. 215, 200–203 (2014)CrossRefGoogle Scholar
  24. 24.
    Rudnev, V.S., Lukiyanchuk, I.V., Adigamova, M.V., Morozova, V.P., Tkachenko, I.A.: The effect of nanocrystallites in the pores of PEO coatings on their magnetic properties. Surf. Coat. Technol. 269, 23–29 (2015)CrossRefGoogle Scholar
  25. 25.
    Adigamova, M.V., Rudnev, V.S., Lukiyanchuk, I.V., Morozova, V.P., Tkachenko, I.A., Kvach, A.A.: The effect of Fe-containing colloid particles in electrolyte on the composition and magnetic characteristics of oxide layers on titanium formed using the method of plasma electrolytic oxidation. Prot. Met. Phys. Chem. Surf. 52, 526–531 (2016)CrossRefGoogle Scholar
  26. 26.
    Al’miev, A., Ralin, A., Kharitonskii, P.: Distribution functions of dipole-dipole interaction of diluted magnetics. Phys. Met. Metalloved. 78, 16–20 (1994)Google Scholar
  27. 27.
    Ralin, A., Kharitonskii, P.: Influence of thermal fluctuations on the magnetic state stability of small two-phase iron particles. Phys. Met. Metalloved. 93, 9–14 (2002)Google Scholar
  28. 28.
    Ralin, A., Kharitonskii, P.: Magnetic metastability of small heterogeneous ferrimagnetic particles. Phys. Met. Metalloved. 78, 28–34 (1994)Google Scholar
  29. 29.
    Meikelejohn, W.H., Bean, C.P.: New magnetic anisotropy. Phys. Rev. 102, 1413–1414 (1956)ADSCrossRefGoogle Scholar
  30. 30.
    Vonsovsky, S.V.: Magnetism. Wiley, New York (1971)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Petr Kharitonskii
    • 1
    • 4
  • Vladimir Rudnev
    • 2
    • 3
  • Elena Sergienko
    • 1
  • Kamil Gareev
    • 4
  • Ivan Tkachenko
    • 2
  • Vera Morozova
    • 2
  • Irina Lukiyanchuk
    • 2
  • Maria Adigamova
    • 2
  • Anatoly Frolov
    • 3
  • Alexander Ustinov
    • 2
    • 3
  1. 1.Saint-Petersburg State UniversitySaint PetersburgRussia
  2. 2.Institute of Chemistry, Far Eastern BranchRussian Academy of SciencesVladivostokRussia
  3. 3.Far Eastern Federal UniversityVladivostokRussia
  4. 4.Saint-Petersburg Electrotechnical University “LETI”Saint PetersburgRussia

Personalised recommendations