First-Principles Calculations of Acoustic and Anharmonic Properties of Ferromagnetic Cu2MnZ (Z = Al and In) Heusler Alloys

  • Yufeng Wen
  • Xianshi Zeng
  • Yuanxiu Ye
  • Liguo Yan
  • Donglan Wu
  • Qingdong Gou
  • Lili Liu
Original Paper
  • 76 Downloads

Abstract

The acoustic and anharmonic properties of ferromagnetic Cu2MnZ (Z = Al and In) Heusler alloys have been investigated by first-principles calculations method. The obtained lattice parameters, magnetic moments, elastic properties are found to be in good agreement with the available experimental values. From the elastic properties, the sound velocities and the related Debye temperatures and minimum thermal conductivities have been obtained for the two alloys. The sound velocities and thermal conductivities of both alloys are found to show significant anisotropy, and the Cu2MnAl with small density and large elastic constants has large sound velocities, high Debye temperature, and large thermal conductivities. Also, the effective second-order elastic constants, generalized Grüneisen constants, and nonlinear ultrasonic parameters to characterize anharmonic properties have been studied for the two alloys. These predictions on the acoustic and anharmonic properties can provide a valuable guidance or reference for further related investigations.

Keywords

Ferromagnetic Cu2MnZ Heusler alloys Acoustic properties Anharmonic properties First-principles 

Notes

Acknowledgements

The work is supported by the Natural Science Foundation of China (51661013, 11564019, 11464020), the PhD Start-up Fund of Natural Science Foundation of Jinggangshan University(JZB15007), and the Science and Technology Research Program of Chongqing Municipal Education Commission (KJ1710252).

References

  1. 1.
    Graf, T., Parkin, S.S.P., Felser, C.: Heusler compounds-a material class with exceptinal properteis. IEEE Trans. Magn. 47, 367–373 (2011)CrossRefGoogle Scholar
  2. 2.
    Graf, T., Casper, F., Winterlik, J., Balke, B., Fecher, G.H., Felser, C.: Crystal structure of new Heusler compounds. Z. Anorg. Allg. Chem. 635, 976–981 (2009)CrossRefGoogle Scholar
  3. 3.
    Graf, T., Felser, C., Parkin, S.S.P.: Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 39, 1–50 (2011)CrossRefGoogle Scholar
  4. 4.
    Kandpal, H.C., Fecher, G.H., Felser, C: Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds. J. Phys. D Appl. Phys. 40, 1507–1523 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Ameri, M., Touia, A., Khenata, R., Al-Douri, Y., Baltache, H.: Structural and optoelectronic properties of NiTiX and CoVX (X = Sb and Sn) half-Heusler compounds: an ab initio study. Optik 124, 570–574 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Missoum, A., Seddik, T., Murtaza, G., Khenata, R., Bouhemadou, A., Al-Douri, Y., Abdiche, A., Meradji, H., Baltache, H.: Ab initio study of the structural and optoelectronic properties of the half-Heusler CoCrZ (Z = Al, Ga). Can. J. Phys. 92, 1105–1112 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Abderrahim, B., Ameri, M., Bensaid, D., Azaz, Y., Doumi, B., Al-Douri, Y., Benzoudji, F.: Half-metallic magnetism of quaternary Heusler compounds Co2FexMn1−xSi(x = 0, 0.5, and 1.0):first-principles calculations. J. Supercond. Nov. Magn. 29, 277–283 (2016)CrossRefGoogle Scholar
  8. 8.
    Bensaid, D., Hellal, T., Ameri, M., Azzaz, Y., Doumi, B., Al-Douri, Y., Abderrahim, B., Benzoudji, F.: First-principle investigation of structural, electronic and magnetic properties in Mn2RhZ (Z = Si, Ge, and Sn) Heusler alloys. J. Supercond. Nov. Magn. 29, 1843–1850 (2016)CrossRefGoogle Scholar
  9. 9.
    Yahiaoui, I.E., Lazreg, A., Dridi, Z., Al-Douri, Y., Bouhafs, B.: Electronic and magnetic properties of Co2CrGa1−xSix Heusler alloys. J. Supercond. Nov. Magn. 30, 421–424 (2017)CrossRefGoogle Scholar
  10. 10.
    Fadila, B., Ameri, M., Bensaid, D., Noureddine, M., Ameri, I., Mesbah, S., Al-Douri, Y.: Structural, magnetic, electronic and mechanical properties of full-Heusler alloys Co2YAl (Y = Fe, Ti): first principles calculations with different exchange-correlation potentials. J. Magn. Magn. Mater.  https://doi.org/10.1016/j.jmmm.2017.06.048 (2017)
  11. 11.
    Amrich, O., Monir, M.E.A., Baltach, H., Bin Omran, S., Sun, X.W., Wang, X., Al-Douri, Y., Bouhemadou, A., Khenata, R.: Half-metallic ferrimagnetic characteristics of Co2YZ (Z = P, As, Sb, and Bi) new full-Heusler alloys: a DFT study. J. Supercond. Nov. Magn.  https://doi.org/10.1007/s10948-017-4206-2 (2017)
  12. 12.
    Kim, K., Kwon, S.J., Kim, W.T.: Characterization of Heusler alloy thin film, Cu2MnAl and Co2MnSi, deposited by co-sputtering method. Phys. Status. Solidi 214, 1557–1560 (2004)CrossRefGoogle Scholar
  13. 13.
    Erb, D., Nowak, G., Westerholt, K., Zabel, H.: Thin films of the Heusler alloys Cu2MnAl and Co2MnSi: recovery of ferromagnetism via solid-state crystallization from the x-ray amorphous state. J. Phys D: Appl. Phys. 43, 285001–285009 (2010)CrossRefGoogle Scholar
  14. 14.
    Geiersbach, U., Bergmann, A., Westerholt, K.: Structural, magnetic and magnetotransport properties of thin films of the Heusler alloys Cu2MnAl, Co2MnSi, Co2MnGe and Co2MnSn. J. Magn. Magn. Mater. 240, 546–549 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    Heusler, F.: Über magnetische manganlegierungen. Verh. Dtsch. Phys. Ges. 5, 219 (1903)Google Scholar
  16. 16.
    Michelutti, B., Perrier de la Bathie, R., du Tremolet de Lacheisserie, E., Waintal A.: Magnetiztion, magnetocrystalline anisotropy, magnetostriction and elastic constants of the Heusler alloy: Cu2MnAl. Solid State Commun. 25, 163–168 (1978)ADSCrossRefGoogle Scholar
  17. 17.
    Rai, D.P., Thapa, R.K.: Study of electronic, magnetic, optical and elastic properties of Cu2MnAl a gapless full Heusler compound. J. Alloys. Compd. 612, 355–360 (2014)CrossRefGoogle Scholar
  18. 18.
    Jalilian, J.: Comment on ‘Study of electronic, magnetic, optical and elastic properties of Cu2MnAl a gapless full Heusler compound’. J. Alloys. Compd. 626, 277–279 (2015)CrossRefGoogle Scholar
  19. 19.
    Wang, H., Li, M.: Ab initio calculations of second-, third-, and fourth-order elastic constants for single crystals. Phys. Rev. B 79, 224102–224111 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Wang, C., Gu, J., Zhang, W., Sun, B., Liu, D., Liu, G.: Nonlinear elastic response anharmonic properties of MgO single crystal: first-principles investigation. Comput. Mater. Sci. 124, 375–383 (2016)CrossRefGoogle Scholar
  21. 21.
    Birch, F.: Finite elastic strain of cubic crystals. Phys. Rev. 71, 809–824 (1947)ADSCrossRefMATHGoogle Scholar
  22. 22.
    Thurston, R., Brugger, K.: Third-order elastic constants and the velocity of small amplitude elastic waves in homogeneously stressed media. Phys. Rev. 135, 3 (1964)ADSCrossRefMATHGoogle Scholar
  23. 23.
    Brugger, K.: Thermodynamic definition of higher order elastic coefficients. Phys. Rev. 133, 1611–1612 (1964)ADSCrossRefMATHGoogle Scholar
  24. 24.
    Kresse, G., Hafner, J.: Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993)ADSCrossRefGoogle Scholar
  25. 25.
    Kresse, G., Furthmller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)CrossRefGoogle Scholar
  26. 26.
    Kresse, G., Furthmller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)ADSCrossRefGoogle Scholar
  28. 28.
    Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 78, 1396 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Uemura, S., Maruyama, H., Kawamura, N., Yamazaki, H., Nagamatsu, S., Fujikawa, T.: Electronic states in Cu2MnX(X=Al, In, and Sn) Heusler alloy studied by XMCD and multiple scattering calculations. J. Synchrotron Radiat. 8, 452–454 (2001)CrossRefGoogle Scholar
  33. 33.
    Kudryavtsev, Y.V., Oksenenko, V.A., Lee, N.N., Lee, Y.P., Rhee, J.Y., Dubowik, J.: Effect of structural disorder on some physical properties of the Cu2MnAl Heusler alloy films. J. Appl. Phys. 97, 113903–113910 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    Krumme, B., Herper, H.C., Erb, D., Weis, C., Antoniak, C., Warland, A., Westerholt, K., Entel, P., Wende, H.: Induced magnetic Cu moments magnetic ordering in Cu2MnAl thin films on MgO(001) observed by XMCD. J. Phys. D: Appl. Phys. 44, 415004–415009 (2011)CrossRefGoogle Scholar
  35. 35.
    Felcher, G.P., Cable, J.W., Wilkinson, M.K: The magnetic moment distribution in Cu2MnAl. J. Phys. Chem. Solid. 24, 1663–1665 (1963)ADSCrossRefGoogle Scholar
  36. 36.
    Natera, M.G., Murthy, M.R.L.N., Begum, R.J., Satya Murthy, N.S.: Atomic and magnetic structure of the Heusler alloys Pd2MnGe, Pd2MnSn, Cu2MnIn, and Co2MnSb. Phys. Stat. Sol. (a) 3, 959–964 (1970)ADSCrossRefGoogle Scholar
  37. 37.
    Chawla, M.: Electronic, magnetic and fermi surface properties Of Cu2MnX (X=Al, In, Sn): ab-initio study. Masters thesis, Indian Institute of Technology Hyderabad (2013)Google Scholar
  38. 38.
    Clementi, E., Raimondi, D.L., Reinhardt, W.P.: Atomic screening constants from SCF functions. II. atoms with 37 to 86 electrons. J. Chem. Phys. 47, 1300–1307 (1967)ADSCrossRefGoogle Scholar
  39. 39.
    Mouhat, F., Coudert, F.X.: Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90, 224104–224107 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    Hill, R: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 65, 349–354 (1952)ADSCrossRefGoogle Scholar
  41. 41.
    Voigt, W.: Lehrbuch der kristallphysik. Taubner, Leipzig (1928)MATHGoogle Scholar
  42. 42.
    Reuss, A.: Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals. Z. Angew. Math. Mech. 9, 49–58 (1929)CrossRefGoogle Scholar
  43. 43.
    Ranganathan, S.I., Ostoja-Starzewski, M.: Universal elastic anisotropy index. Phys. Rev. Lett. 101, 55504–5507 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    Pugh S.F.: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823–843 (1954)CrossRefGoogle Scholar
  45. 45.
    Frantsevich, I.N., Voronov, F.F., Bokuta, S.A.: In: Frantsevich, I.N. (ed.) Elastic Constants and Elastic Moduli of Metals and Insulators handbook, pp 60–180. Naukova Dumka, Kiev (1983)Google Scholar
  46. 46.
    Pettifor, D.G.: Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345–349 (1992)CrossRefGoogle Scholar
  47. 47.
    Singh, D., Pandey, D.K.: Ulstasonic investigations in intermetallics. Pramana 72, 389–398 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    Anderson, O.L.: A simplified method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909–917 (1963)ADSCrossRefGoogle Scholar
  49. 49.
    Schreiber, E., Anderson, O.L., Soga, N.: Elastic constants and their measurements. McGraw, New York (1973)Google Scholar
  50. 50.
    Fenander, N.G., Wiktorin, L., Mayers, H.P: The low temperature specific heat of the heusler alloys Cu2MnAl and Cu2MnSn. J. Phys. Chem. Solids 29, 1973–1976 (1968)ADSCrossRefGoogle Scholar
  51. 51.
    Cahill, D.G., Pohl, R.O.: Lattice vibrations and heat transport in crystals and glasses. Ann. Rev. Phys. Chem. 39, 93–121 (1988)ADSCrossRefGoogle Scholar
  52. 52.
    Callaway, J.: Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046–1051 (1959)ADSCrossRefMATHGoogle Scholar
  53. 53.
    Feng, H.F., Wu, X.Z., Gan, L.Y., Wang, R., Wei, Q.Y: The elastic constants and anisotropy of superconducting MgCNi3 and CdCNi3 under different pressure. J. Supercond. Nov. Magn. 27, 1187–1194 (2014)CrossRefGoogle Scholar
  54. 54.
    Liu, L.L., Wu, X.Z., Wang, R., Gan, L.Y., Wei, Q.Y.: Nonlinear elastic properties of superconducting MNNi3(M = Zn, Cd, Mg, Al, Ga, and In) from first principles. J. Supercond. Nov. Magn. 27, 1851–1859 (2014)CrossRefGoogle Scholar
  55. 55.
    Wang, K., Wu, X.Z., Li, W.G., Wang, R., Wei, Q.Y.: Third order elastic constants and Debye temperature of MgB2 under different pressure: first-principles methods. J. Supercond. Nov. Magn. 28, 1483–1489 (2015)CrossRefGoogle Scholar
  56. 56.
    Wen, Y.F., Wu, D.L., Cao, R.P., Liu, L.L., Song, L.: The third-order elastic moduli and debye temperature of SrFe2As2 and BaFe2As2: a first-principles study. J. Supercond. Nov. Magn. 30, 1749–1756 (2017)CrossRefGoogle Scholar
  57. 57.
    Mayer, A.P., Wehner, R.K.: Calculation of güneisen constants in Si. Phys. Stat. Sol. (b) 126, 91–103 (1984)ADSCrossRefGoogle Scholar
  58. 58.
    Brugger, K.: Generalized güneisen parameters in the anisotropic Debye model. Phys. Rev. 137, A1826–A1827 (1965)ADSMathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Wallace, D.C.: Thermodynamics of Crystals. Wiley, New York (1972)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Yufeng Wen
    • 1
    • 2
  • Xianshi Zeng
    • 1
    • 3
  • Yuanxiu Ye
    • 1
  • Liguo Yan
    • 1
  • Donglan Wu
    • 1
  • Qingdong Gou
    • 1
  • Lili Liu
    • 4
  1. 1.School of Mathematical Sciences and PhysicsJinggangshan UniversityJi’anPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringShanghai Jiaotong UniversityShanghaiPeople’s Republic of China
  3. 3.Research Center of Laser FusionChina Academy of Engineering PhysicsMianyangPeople’s Republic of China
  4. 4.Department of PhysicsChongqing Three Gorges UniversityWanzhouPeople’s Republic of China

Personalised recommendations