Phenomenological Modeling of Magnetocaloric Effect for Ni58Fe26Ga28 Alloy

Original Paper

Abstract

The magnetocaloric effect (MCE) of shape memory Ni58Fe26Ga28 has been investigated. A phenomenological model is used for simulation of magnetization dependence on temperature variation to investigate magnetocaloric properties such as magnetic entropy change and heat capacity change. The results indicate the potential of Ni58Fe26Ga28 alloy to achieve the MCE at temperatures near Curie temperature. This alloy presents a good-looking approach for cooling applications in its prospective candidate for a cooling system in a wide temperature interval including room temperature. The results also confirmed that the phenomenological model is useful for prediction of the MCE for magnetic materials.

Keywords

Ni58Fe26Ga28 Magnetocaloric effect Phase transitions 

References

  1. 1.
    Hamad, M.A.: Low magnetic field magnetocaloric effect in Gd5−xEuxGe4. J. Supercond. Nov. Magn. 29, 1539–1543 (2016)CrossRefGoogle Scholar
  2. 2.
    Hamad, M.A.: Magnetocaloric effect of perovskite Eu0.5Sr0.5CoO3. J. Supercond. Nov. Magn. 27, 277–280 (2014)CrossRefGoogle Scholar
  3. 3.
    Ewas, A.M., Hamad, M.A.: Ceramics International 43, 7660–7662 (2017)CrossRefGoogle Scholar
  4. 4.
    Hamad, M.A.: J. Supercond. Nov. Magn. 29, 2867–2871 (2016)CrossRefGoogle Scholar
  5. 5.
    Hamad, M.A.: Tailoring Magnetocaloric Effect in La0.7Sr0.3MnO3-TiO2. J. Supercond. Nov. Magn.,  https://doi.org/10.1007/s10948-017-4201-7 (2017)
  6. 6.
    Hamad, M.A.: J. Supercond. Nov. Magn. 27, 2569–2572 (2014)CrossRefGoogle Scholar
  7. 7.
    Hamad, M.A.: Monte Carlo calculations of magnetic heat capacity of La0.7Sr0.3−x MnO3−δ. J. Supercond. Nov. Magn. 28, 2525–2528 (2015)CrossRefGoogle Scholar
  8. 8.
    Hamad, M.A.: J. Supercond. Nov. Magn. 27, 223 (2014)CrossRefGoogle Scholar
  9. 9.
    Hamad, M.A.: Processing and Application of Ceramics 9, 11–15 (2015)CrossRefGoogle Scholar
  10. 10.
    Hamad, M.A.: Giant isothermal entropy change in (111)-oriented PMN-PT thin film. J. Adv. Dielect. 4, 1450026 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Hamad, M.A.: Electrocaloric properties of Zr-modified Pb(Mg1/3Nb2/3)O3 polycrystalline ceramics. J. Adv. Dielect. 3, 1350029 (2013)CrossRefGoogle Scholar
  12. 12.
    Hamad, M.A.: J. Adv. Ceram. 2, 308–312 (2013)CrossRefGoogle Scholar
  13. 13.
    Hamad, M.A.: Theoretical investigations on electrocaloric properties of relaxor ferroelectric 0.9PbMg1/3Nb2/3 O3− 0.1PbTiO3 thin film. J. Comput. Electron. 11, 344–348 (2012)CrossRefGoogle Scholar
  14. 14.
    Hamad, M.A.: Lanthanum concentration effect of magnetocaloric properties in LaxMnO3−δ. J. Supercond. Nov. Magn. 28, 173–178 (2015)CrossRefGoogle Scholar
  15. 15.
    Hamad, M.A.: J. Supercond. Nov. Magn. 26, 669 (2013)CrossRefGoogle Scholar
  16. 16.
    Hamad, M.A.: Arab. J. Sci. Eng. 39, 569 (2014)CrossRefGoogle Scholar
  17. 17.
    Chernenko, V.A., Cesari, E., Kokorin, V.V., Vitenko, I.N.: Scripta Mater. 33, 1239 (1995)CrossRefGoogle Scholar
  18. 18.
    Kumar, S.V., Seenithurai, S., Raja, M.M., Mahendran, M.: J. Electron. Mater. 44, 3761 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Yin, R., Wendler, F., Krevet, B., Kohl, M.: Sens. Actuators, A 246, 48 (2016)CrossRefGoogle Scholar
  20. 20.
    Nilsén, F., Aaltio, I., Ge, Y., Söderberg, O., Glavastkyy, I., Lahelin, M., Maki, R., Hannula, S.-P.: J. Alloys Compd. 656, 408 (2016)CrossRefGoogle Scholar
  21. 21.
    Amin, M.A., El-Bagoury, N., Shokry, H.: Int. J. Electrochem. Sci. 8, 2791 (2013)Google Scholar
  22. 22.
    Heil, T.M., Willard, M.A., Reynolds, W.T.: Metall. Mater. Trans. A. 38, 752–758 (2007)CrossRefGoogle Scholar
  23. 23.
    Hamad, M.A.: J. Supercond. Nov. Magn. 28, 3111–3115 (2015)CrossRefGoogle Scholar
  24. 24.
    Hamad, M.A.: J. Supercond. Nov. Magn. 28, 3329–3333 (2015)CrossRefGoogle Scholar
  25. 25.
    Hamad, M.A.: J. Supercond. Nov. Magn. 28, 3365–3369 (2015)CrossRefGoogle Scholar
  26. 26.
    Hamad, M.A.: Theoretical work on effect of pressure on magnetocaloric properties of La0.7Ca0.3MnO3. Int. J. Thermophys. 36, 2748–2754 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    Hamad, M.A.: Magnetocaloric effect in La1−xCexMnO3. J. Adv. Ceram. 4, 206–210 (2015)CrossRefGoogle Scholar
  28. 28.
    Hamad, M.A.: J Therm. Anal. Calorim. 115, 523 (2014)CrossRefGoogle Scholar
  29. 29.
    Hamad, M.A.: Calculations of the low field magnetocaloric effect in Fe4MnSi3Bx. J. Supercond. Nov. Magn. 28, 2223–2227 (2015)CrossRefGoogle Scholar
  30. 30.
    Goodenough, J.B.: Phys. Rev. 100, 564 (1955)ADSCrossRefGoogle Scholar
  31. 31.
    Dan’kov, S.Y., Tishin, A.M., Pecharsky, V.K., Gschneidner, K.A. Jr.: Phys. Rev. B 57, 3478 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    Pecharsky, V.K., Gschneidner, K.A. Jr.: J. Magn. Magn. Mater. 200, 44 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceAlexandria UniversityAlexandriaEgypt
  2. 2.High Institute of Engineering and TechnologyKing Marriott AcademyAlexandriaEgypt

Personalised recommendations