Advertisement

Spin-Dependent Thermoelectric Effects in Double-Barrier Magnetic Tunnel Junctions with a Non-magnetic Metal Spacer

  • Reza Daqiq
Original Paper
  • 71 Downloads

Abstract

Spin-dependent thermoelectric (TE) effects are studied in MgO-based double-barrier magnetic tunnel junctions with a non-magnetic metal spacer (DBMTJs-NM) in the linear response regime. Using non-equilibrium Green’s function (NEGF) formalism, the results show resonant peaks at specific thicknesses of the NM spacer because of the resonant tunneling effect through the DBMTJs-NM. Effects of average temperature and magnetization alignment are also described. Therefore, thermally charge and spin voltage lead to large spin-dependent TE effects by the DBMTJs-NM structures.

Keywords

Spin-dependent thermoelectric effects Double-barrier MTJs Non-magnetic metal spacer Resonant tunneling effect 

References

  1. 1.
    Thomas, L., Jan, G., Le, S., Wang, P.-K.: Quantifying data retention of perpendicular spin-transfer-torque magnetic random access memory chips using an effective thermal stability factor method. Appl. Phys. Lett. 106, 162402 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    Mojumder, N.N., Agustine, C., Nikonov, D.E., Roy, K.: Effect of quantum confinement on spin transport and magnetization dynamics in dual barrier spin transfer torque magnetic tunnel junctions. J. Appl. Phys. 108, 104306 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    Daqiq, R., Ghobadi, N.: Resonant spin-transfer torque in asymmetric double barrier magnetic tunnel junctions (MTJs). Superlattices Microstruct. 102, 417 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    Chatterji, N., Tulapurkar, A.A., Muralidharan, B.: Enhancement of spin-transfer torque switching via resonant tunneling. Appl. Phys. Lett. 105, 232410 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Balke, B., Ouardi, S., Graf, T., Barth, J., Blum, C.G.F., Fecher, G.H., Shkabko, A., Weidenkaff, A., Felser, C.: Seebeck coefficients of half-metallic ferromagnets. Solid State Commun. 150, 529 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Pichansuakron, P., Bandaru, P.: Nanostructured thermoelectrics. Mater. Sci. Eng. R 67, 19 (2010)CrossRefGoogle Scholar
  7. 7.
    Swirkowicz, R., Wirezbicki, M., Barnas, J.: Thermoelectric effects in transport through quantum dots attached to ferromagnetic leads with noncollinear magnetic moments. Phys. Rev. B 80, 195409 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Harman, T.C., Taylor, P.J., Walsh, M.P., LaForge, B.E.: Quantum dots superlattice thermoelectric materials and devices. Science 297, 2229 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Hicks, L.D., Dresselhaus, M.S.: Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    Hicks, L.D., Harman, T.C., Dresselhaus, M.S.: Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials. Appl. Phys. Lett. 63, 3230 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    Hicks, L.D., Dresselhaus, M.S.: Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47, 16631 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    Mingo, N.: Thermoelectric figure of merit and maximum power factor in III-V semiconductor nanowires. Appl. Phys. Lett. 84, 2652 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Czerner, M., Bachmann, M., Heiliger, C.: Spin caloritronics in magnetic tunnel junctions: ab initio studies. Phys. Rev. B 83, 132405 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Marschall, J., Majumdar, A.: Charge and energy transport by tunneling thermoelectric effects. J. Appl. Phys. 74, 4000 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    Zhang, Z.H., Gui, Y.S., Fu, L., Fan, X.L., Cao, J.W., Xue, D.S., Freitas, P.P., Houssameddine, D., Hemour, S., Wu, K., Hu, C.-M.: Seebeck rectification enabled by intrinsic thermoelectrical coupling in magnetic tunnel junctions. Phys. Rev. Lett. 109, 037206 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Boehnke, A., Walter, M., Roschewsky, N., Eggebrecht, T., Drewello, V., Rott, K., Munzenberg, M., Thomas, A., Reiss, G.: Time-resolved measurement of the tunnel magneto-Seebeck effect in a single magnetic tunnel junction. Rev. Sci. Instrum. 84, 063905 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Walter, M., Walowski, J., Zbarsky, V., Münzenberg, M., Schäfers, M., Ebke, D., Reiss, G., Thomas, A., Peretzki, P., Seibt, M., Moodera, J.S., Czerner, M., Bachmann, M., Heiliger, C.: Seebeck effect in magnetic tunnel junctions. Nat. Mater. 10, 742 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Liebing, N., Serrano-Guisan, S., Rott, K., Reiss, G., Langer, J., Ocker, B., Schumacher, H.W.: Tunneling magnetothermopower in magnetic tunnel junction nanopillars. Phys. Rev. Lett. 107, 177201 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Lin, W., Hehn, M., Chaput, L., Negulescu, B., Andrieu, S., Montaigne, F., Mangin, S.: Giant spin-dependent thermoelectric effect in magnetic tunnel junctions. Nat. Commun. 3, 744 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Teixeira, J.M., Costa, J.D., Ventura, J., Fernandez-Garcia, M.P., Azevedo, J., Araujo, J.P., Sousa, J.B., Wisniowski, P., Cardoso, S., Freitas, P.P.: Giant intrinsic thermomagnetic effects in thin MgO magnetic tunnel junctions. Appl. Phys. Lett. 102, 212413 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Hicks, L.D., Harman, T.C., Sun, X., Dresselhaus, M.S.: Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 53, R10493 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    Venkatasubramanian, R., Siivola, E., Colpitts, T., O’Quinn, B.: Thin-film thermoelectric devices with high room-temperature figure of merit. Nature 413, 597 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    Kim, W., Singer, S.L., Majumdar, A., Vashaee, D., Bian, Z., Shakouri, A., Zeng, G., Bowers, J.E., Zide, J.M.O., Gossard, A.C.: Cross-plane lattice and electronic thermal conductivities of ErAs: InGaAs/InGaAlAs superlattices. Appl. Phys. Lett. 88, 242107 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Wilczyński, M.: Thermopower, figure of merit and spin-transfer torque induced by the temperature gradient in planar tunnel junctions. J. Phys.: Condens. Matter 23, 456001 (2011)Google Scholar
  25. 25.
    Nicolau, J.H., Sanchez, D.: Spin and charge thermopower of resonant tunneling diodes. Appl. Phys. Lett. 104, 112402 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Uchida, K., Takahashi, S., Harii, K., Ieda, J., Koshibae, W., Ando, K., Maekawa, S., Saitoh, E.: Observation of the spin Seebeck effect. Nature 455, 778 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    Bauer, G.E.W., Mac Donald, A.H., Maekawa, S.: Spin caloritronics. Solid State Commun. 150, 459 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Bauer, G.E.W., Saitoh, E., van wees, B.J.: Spin caloritronics. Nat. Mater. 11, 391 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Datta, S.: Quantum Transport: Atom to Transistor, 1st edn. Cambridge University Press, New York (2005)CrossRefGoogle Scholar
  30. 30.
    Datta, D., Behin-Aein, B., Salahuddin, S., Datta, S.: Voltage asymmetry of spin transfer torques. IEEE Trans. Nanotechnol. 11, 261 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Trocha, P., Barnas, J.: Large enhancement of thermoelectric effects in a double quantum dot system due to interference and Coulomb correlation phenomena. Phys. Rev. B 85, 085408 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Jia, C., Berakdar, J.: Anisotropic thermoelectric effect in helimagnetic tunnel junctions. Appl. Phys. Lett. 98, 192111 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of PhysicsMalayer UniversityMalayerIran

Personalised recommendations