Computational Research of Electronic and Magnetic Properties of Nonmetal Doping of Graphene-Like ZnO Monolayer

Original Paper
  • 105 Downloads

Abstract

In this paper, the geometrical, electronic, and magnetic properties of nonmetal (B, C, N, F, Si, P, or S) atom doping of g-ZnO monolayer supercell have been comprehensively calculated using the first-principle method. The structural optimization implies that nonmetal atom doping of g-ZnO monolayer leads to the structural distortion around the doping atoms compared with pure g-ZnO sheet. We find that g-ZnO monolayer with one O atom per supercell substituted by one B or C atom is ferromagnetic half metal, and that substituted by one N, Si, or P atom exhibits a ferromagnetic semiconductor feature, while that substituted by one F or S atom appears to be nonmagnetic semiconductor. The total magnetic moments mainly originates from the spin polarization of the doping atom (B, C, N, Si, and P), and the rest comes from the nearest Zn and O atoms.

Keywords

G-ZnO monolayer Electronic structure Magnetic properties First-principles method 

Notes

Funding Information

The authors acknowledge computational supports from the National Natural Science Foundation of China (grant nos. 21606177 and 11547118) and the Natural Science Foundation of Shaanxi Province of China (grant nos. 2016JQ1027)

References

  1. 1.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Science 306, 666 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Becerill, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z., Chen, Y.: ACS Nano. 2, 463 (2008)CrossRefGoogle Scholar
  3. 3.
    Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H.T., Wees, J.V.B.: Nature 448, 571 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Tusche, C., Meyerheim, H.L., Kirschner, J.: Phys. Rev. Lett. 99, 026102 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Wu, H.M., Wu, X.J., Pei, Y., Zeng, X.C.: Nano Res. 4, 233 (2011)CrossRefGoogle Scholar
  6. 6.
    Botello-Méndez, A.R., López-urías, F., Terrones, M., Terrones, H.: Nano Lett. 8, 1562 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Botello-Méndez, A.R., López-urías, F., Terrones, M., Terrones, H.: Nano Res. 1, 420 (2008)CrossRefGoogle Scholar
  8. 8.
    Zhang, Y., Wu, S.Q., Wen, Y.H., Zhu, Z.Z.: Appl. Phys. Lett. 96, 223113 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Claeyssens, F., Freeman, C.L., Allan, N.L., Sun, Y., Ashfolda, M.N.R., Harding, J.H.: J. Mater. Chem. 15, 139 (2005)CrossRefGoogle Scholar
  10. 10.
    Hur, T.B., Hwang, Y.H., Kima, H.K., Park, H.L.: J. Appl. Phys. 96, 1740 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Wu, M.Y., Sun, D., Tan, C.L., Tian, X.H., Huang, Y.W.: Materials 10, 359 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Ren, J., Zhang, H., Cheng, X.: Int. J. Quantum Chem. 113, 2243 (2013)CrossRefGoogle Scholar
  13. 13.
    He, A.L., Wang, X.Q., Wu, R.Q., Lu, Y.H., Feng, Y.P.: J. Phys.: Condens. Matter 22, 175501 (2010)ADSGoogle Scholar
  14. 14.
    Schmidt, T.M., Miwa, R.H., Fazzio, A.: Phys. Rev. B 81, 195413 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Amiri, A.E., Moubah, R., Lmai, F., Abid, M., Hassanain, N., Hlil, E.K., Lassri, H.: J. Magn. Magn. Mater. 398, 86 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Karzazi, O., Sekhar, K.C., Amiri, A.E.E., Hlil, K., Conde, O., levichev, S., Agostinho Moreira, J., Chahboun, A., Almeida, A., Gomes, M.J.M.: J. Magn. Magn. Mater. 395, 28 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Tan, C.L., Sun, D., Xu, D.S., Tian, X.H., Huang, Y.W.: Ceram. Int. 42, 10997 (2006)CrossRefGoogle Scholar
  18. 18.
    Tan, C.L., Sun, D., Zhou, L., Tian, X.H., Huang, Y.W.: Superlattice. Microstruct. 98, 416 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Sarkar, D., Ghosh, C.K., Chattopadhyay, K.K.: Appl. Surf. Sci. 418, 252 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    Guo, H.Y., Zhao, Y., Lu, N., Kan, E., Zeng, X.C., Wu, X.J., Yang, J.L.: J. Phys. Chem. C 116, 11336 (2012)CrossRefGoogle Scholar
  21. 21.
    Zhang, Y.H., Cheng, M.L., Zhou, Y.C., Zhao, J.H., Fang, S.M., Li, F.: J. Mater. Chem. A 2, 13129 (2014)CrossRefGoogle Scholar
  22. 22.
    Rao, G.S., Hussain, T., Islam, M.S., Sagynbaeva, M., Gupta, D., Panigrahi, P., Ahuja, R.: Nanotechnology 27, 015502 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Kresse, G., Furthmüller, J.: Comput. Mater. Sci. 6, 15 (1996)CrossRefGoogle Scholar
  24. 24.
    Adolph, B., Furthmüller, J., Bechstedt, F.: Phys. Rev. B 63, 125108 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    Blöchl, P.E.: Phys. Rev. B 50, 17953 (1994)ADSCrossRefGoogle Scholar
  26. 26.
    Kohn, W., Sham, L.J.: Phys. Rev. 140, A1133 (1965)ADSCrossRefGoogle Scholar
  27. 27.
    Hammer, B., Hansen, L.B., Nørskov, J.K.: Phys. Rev. B 59, 7413 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    Lu, N., Guo, H.Y., Hu, W., Wu, X.J., Zeng, X.C.: J. Mater. Chem. C 5, 3121 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of ScienceXi’an Shiyou UniversityXi’anChina
  2. 2.College of Physics and Information TechnologyShaanxi Normal UniversityXi’anChina

Personalised recommendations