Effect of Strain on Magnetic Coupling in Ga-Doped WS2 Monolayer: Ab Initio Study

  • M. Luo
  • Y. H. ShenEmail author
Original Paper


Magnetic properties of Ga-doped WS2 monolayer under strain are investigated by ab initio methods. Without strain, the Ga-doped WS2 monolayer is a magnetic nanomaterial, and the total magnetic moment is about 0.82 μB. We applied strain to Ga-doped WS2 monolayer from − 10 to 10%. The magnetic properties are modified under different strains, and a maximum magnetic moment reaches 3.09 μB at − 3% compressive strain. However, the magnetic moment of system decreases to zero sharply when compressive strain arrived at − 10%. The coupling among Ga 3d, W 5d, and S 3p states is responsible for the strong strain effect on the magnetic properties. Our studies predict Ga-doped WS2 monolayer under strain to be candidates for application in spintronics.


WS2 monolayer Nonmagnetic metal Strain DFT calculations 


Funding Information

The work is supported by the Shanghai Committee of Science and Technology, China (grant no. ZHT. K1507). We also thank the National Supercomputer Center in Shenzhen.


  1. 1.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Zhang, Y.B., Tan, Y.W., Stormer, H.L., Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Sun, C.Q.: Dominance of broken bonds and nonbonding electrons at the nanoscale. Nanoscale 2, 1930–1938 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Du, X.J., Chen, Z., Zhang, J., Ning, Z.R., Fan, X.L.: First-principles study on armchair AlN nanoribbons with different edge terminations. Superlattice. Micro. 67, 40–46 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Stoller, M.D., Park, S., Zhu, Y., An, J., Ruoff, R.S.: Graphene-based ultracapacitors. Nano Lett. 8, 3498–3505 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Ma, Y.D., Dai, Y., Wei, W., Niu, C.W., Yu, L., Huang, B.B.: First-principles study of the graphene@MoSe2 heterobilayers. J. Phys. Chem. C115, 20237–20241 (2011)Google Scholar
  7. 7.
    Li, X.R., Dai, Y., Ma, Y.D., Huang, B.B.: Electronic and magnetic properties of honeycomb transition metal monolayers: first-principles insights. Phys. Chem. Chem. Phys. 16, 13383–13389 (2014)CrossRefGoogle Scholar
  8. 8.
    Ma, Y.D., Dai, Y., Guo, M., Niu, C.W., Lu, J.B., Huang, B.B.: Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers. Phys. Chem. Chem. Phys. 13, 15546–15553 (2011)CrossRefGoogle Scholar
  9. 9.
    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Braga, D., Lezama, I.G., Berger, H., Morpurgo, A.: Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano Lett. 12, 5218–5223 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Li, Y., Wu, D., Zhou, Z., Cabrera, C.R., Chen, Z.: Enhanced Li adsorption and diffusion on MoS2 zigzag nanoribbons by edge effects: a computational study. J. Phys. Chem. Lett. 3, 2221–2227 (2012)CrossRefGoogle Scholar
  12. 12.
    Li, Y., Zhou, Z., Zhang, S., Chen, Z.: MoS2 nanoribbons: high stability and unusual electronic and magnetic properties. J. Am. Chem. Soc. 130, 16739–16744 (2008)CrossRefGoogle Scholar
  13. 13.
    Jing, Y., Zhou, Z., Cabrera, C.R., Chen, Z.: Graphene, inorganic graphene analogs and their composites for lithium ion batteries. J. Mater. Chem. A 2, 12104–12122 (2014)CrossRefGoogle Scholar
  14. 14.
    Tang, Q., Zhou, Z., Chen, Z.: Innovation and discovery of graphene-like materials via density-functional theory computations. WIREs Comput. Mol. Sci. 5, 360–379 (2015)CrossRefGoogle Scholar
  15. 15.
    Hashmi, A., Hong, J.: Transition metal doped phosphorene: first-principles study. J. Phys. Chem. C 119, 9198–9206 (2015)CrossRefGoogle Scholar
  16. 16.
    Gil, C.J., Pham, A., Yu, A., Li, S.: An ab initio study of transition metals doped with WSe2 for long-range room temperature ferromagnetism in two-dimensional transition metal dichalcogenide. J. Phys. Condens. Matter 26, 306004–306011 (2014)CrossRefGoogle Scholar
  17. 17.
    Ramasubramaniam, A., Naveh, D.: Mn-doped monolayer MoS2: an atomically thin dilute magnetic semiconductor. Phys. Rev. B 87, 195201–195206 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Sliney, H.E.: Solid lubricant materials for high temperatures: a review. Tribol. Int. 15, 303–315 (1982)CrossRefGoogle Scholar
  19. 19.
    Yang, Y., Fan, X.L., Zhang, H.: Effect of strain on the magnetic states of transitionmetal atoms doped monolayer WS2. Comput. Mater. Sci. 117, 354–360 (2016)CrossRefGoogle Scholar
  20. 20.
    Zhang, Y.F., Zhang, Y., Liu, F.: Formation of hydrogenated graphene nanoripples by strain engineering and directed surface self-assembly. Phys. Rev. B 83, 041403–041410 (2011)ADSGoogle Scholar
  21. 21.
    Liu, Z., Wu, J., Duan, W., Lagally, M.G., Liu, F.: Electronic phase diagram of single-element silicon “strain” superlattices. Phys. Rev. Lett. 105, 016802 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Liu, F., Rugheimer, P., Mateeva, E., Savage, D.E., Lagally, M.G.: Nanomechanics-response of a strained semiconductor structure. Nature 416, 498 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    Ming, W.M., Wang, Z.F., Zhou, M., Yoon, M., Liu, F.: Formation of ideal rashba states on layered semiconductor surfaces steered by strain engineering. Nano Lett. 16, 404–409 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Shi, H.L., Pan, H., Zhang, Y.W., Yakobson, B.I.: Strong ferromagnetism in hydrogenated monolayer MoS2 tuned by strain. Phys. Rev. B 88, 205305 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Ma, Y.D., Dai, Y., Guo, M., Niu, C.W., Zhu, Y.T., Huang, B.B.: Evidence of the existence of magnetism in pristine VX2 monolayers (X = S, Se) and their strain-induced tunable magnetic properties. ACS Nano 6, 1695–1702 (2012)CrossRefGoogle Scholar
  26. 26.
    Kou, L.Z., Tang, C., Guo, W.L., Chen, C.F.: Tunable magnetism in strained graphene with topological line defect. ACS Nano 5, 1012–1019 (2012)CrossRefGoogle Scholar
  27. 27.
    Zhou, Y.G., Su, Q.L., Wang, Z.G., Deng, H.Q., Zu, X.T.: Controlling magnetism of MoS2 sheets by embedding transition-metal atoms and applying strain. Phys. Chem. Chem. Phys. 15, 18464–18470 (2013)CrossRefGoogle Scholar
  28. 28.
    Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    Mishra, R., Zhou, W., Pennycook, S.J., Pantelides, S.T., Idrobo, J.C.: Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides. Phys. Rev. B 88, 144409–144413 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of PhysicsShanghai Polytechnic UniversityShanghaiPeople’s Republic of China
  2. 2.Key Laboratory of Polar Materials and DevicesEast China Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations