Skip to main content
Log in

Role of A Cation Vacancy in the Exchange-Biased LaFeO3 Multiferroic Nanocrystals

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Multiferroic samples with the chemical formula La\(_{1-x}\square _{x}\)FeO3 (0.0 ≤ x ≤ 0.03) were successfully prepared in nanoscale by citrate nitrate combustion method. XRD data reveals crystallized single-phase orthorhombic symmetry for the prepared nanopowder. All measured magnetic parameters point to the antiferromagnetic character with weak ferromagnetic moment. The value of the molar magnetic susceptibility (χ M ) for La\(_{\mathrm {0.99}}\square _{\mathrm {0.01}}\)FeO3 reaches 3.5 times that of the undoped sample. The saturation magnetization of the samples La\(_{\mathrm {0.99}}\square _{\mathrm {0.01}}\)FeO3 and La\(_{\mathrm {0.97}}\square _{\mathrm {0.03}}\)FeO3 increased two times as compared with that of the parent one. The exchange bias (EB) effect was observed for 1st time at room temperature and originated from antiferromagnetic–ferromagnetic (AFM-FM) interface effect. Ferroelectric hysteresis loop was observed at room temperature for the samples which highlighted the presence of the ferroelectric ordering. A huge enhancement in the saturation (P s), the remnant polarization (P r), and the coercive electric field (E c) of the sample La\(_{\mathrm {0.98}}\square _{\mathrm {0.02}}\)FeO3 by 7.5, 24, and 12 times, respectively, when compared with the parent sample LaFeO3. Based on the obtained results, the investigated samples are categorized in type I multiferroics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ahmed, M.A., Selim, M.S., Arman, M.M.: Novel multiferroic La0.95Sb0.05FeO3 orthoferrite. Mater. Chem. Phys. 129, 705–712 (2011)

    Article  Google Scholar 

  2. Ahmed, M.A., El-Dek, S.I.: Extraordinary role of Ca2+ ions on the magnetization of LaFeO3 orthoferrite. Mater. Sci. Eng. B 128, 30–3 (2006)

    Article  Google Scholar 

  3. Brink, J., Khomskii, ID.: Multiferroicity due to charge ordering. J. Phys. Condensed Matter 20, 434217 (2008)

    Article  Google Scholar 

  4. Berchmans, L.J., Sindhu, R., Angappan, S., Augustin, C.O.: Effect of antimony substitution on structural and electrical properties of LaFeO3. J. Mater. Process. Technol. 207, 301–306 (2008)

    Article  Google Scholar 

  5. Cullity, B.D.: Element of X-ray Diffraction. Addison-Wesley Publishing Company Inc, London (1978)

    MATH  Google Scholar 

  6. Elliott, S.R.: Ac conduction in amorphous-chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135–218 (1987)

    Article  ADS  Google Scholar 

  7. Hole, I., Tybell, T., Grepstad, J.K., Wærnhus, I., Grande, T., Wiik, K.: High temperature transport kinetics in heteroepitaxial LaFeO3 thin films. Solid-State Electron. 47, 2279–2282 (2003)

    Article  ADS  Google Scholar 

  8. Hur, N., Park, S., Sharma, A.P., Ahn, S.J., Guha, S., Cheong, W.S.: Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392 (2004)

    Article  ADS  Google Scholar 

  9. Ita, B., Murugavel, P., Ponnambalam, V., Raju, A.R.: Proc. Magnetic properties of lanthanum orthoferrite fine powders prepared by different chemical routes. Ind. Acad. Sci. (Chem Sci.) 115, 519–524 (2003)

    Article  Google Scholar 

  10. Jiang, Y., Nozaki, T., Abe, S., Ochiai, T., Hirohata, A., Tezuka, N., Inomata, K.: Substantial reduction of critical current for magnetization switching in an exchange-biased spin valve. Nat. Mater 3, 361–4 (2004)

    Article  ADS  Google Scholar 

  11. Khomskii, D.: Classifying multiferroics: Mechanisms and effects. Physics 2, 20 (2009)

    Article  Google Scholar 

  12. Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., Tokura, Y.: Magnetic control of ferroelectric polarization. Nature 426, 55 (2003)

    Article  ADS  Google Scholar 

  13. Meiklejohn, W.P., Bean, C.P.: New magnetic anisotropy. Phys. Rev. 102, 1413 (1956)

    Article  ADS  Google Scholar 

  14. Martinelli, G., Carotta, M., Ferroni, M., Sadaoka, Y., Traversa, E.: Screen printed perovskite type thin films as gas sensors for environmental monitoring. Sens. Actuators B 55, 99–110 (1999)

    Article  Google Scholar 

  15. Montini, T., Bevilacqua, M., Fonda, E., Casula, M.F., Lee, S., Tavagnacco, C., Gorte, R.J., Fornasiero, P.: Relationship between electrical behavior and structural characteristics in Sr-doped LaNi0.6Fe0.4O3−δ mixed oxides. Chem. Mater. 21, 1768–1774 (2009)

    Article  Google Scholar 

  16. Mukhopadhyay, K., Mahapatra, A.S., Chakrabarti, P.K.: Multiferroic behavior, enhanced magnetization and exchange bias effect of Zn substituted nanocrystalline LaFeO3 (La(1−x)ZnxFeO3, x = 0.10, and 0.30). J. Magn. Magn. Mater. 329, 133–141 (2013)

    Article  ADS  Google Scholar 

  17. Parida, K.M., Reddy, K.H., Martha, S., Das, D.P., Biswal, N.: Fabrication of nanocrystalline LaFeO3: an efficient sol-gel auto-combustion assisted visible light responsive photocatalyst for water decomposition. Int. J. Hyd. Energy 35, 12161–8 (2010)

    Article  Google Scholar 

  18. Rais, A.: Absolute method of calibration of a Faraday microbalance. Measurement 35, 289–292 (2004)

    Article  Google Scholar 

  19. Ren, Y., Küngas, R., Gorte, R.J., Deng, C.: The effect of A-site cation (Ln = La, Pr, Sm) on the crystal structure, conductivity and oxygen reduction properties of Sr-doped ferrite perovskites. Solid State Ion. 212, 47–54 (2012)

    Article  Google Scholar 

  20. Skumryev, V., Stoyanov, S., Zhang, Y., Hadjipanayis, G., Givord, D., Nogués, J.: Beating the superparamagnetic limit with exchange bias. Nature (London) 423, 850–3 (2003)

    Article  ADS  Google Scholar 

  21. Su, H., Jing, L., Shi, K., Yao, C., Fu, H.: Synthesis of large surface area LaFeO3 nanoparticles by SBA-16 template method as high active visible photocatalysts. J. Nanopart. Res. 12, 967–974 (2010)

    Article  ADS  Google Scholar 

  22. Shen, H., Cheng, G., Wu, A., Xu, J., Zhao, J.: Combustion synthesis and characterization of nano-crystalline LaFeO3 powder. Phys. Status Solidi A 206, 1420–4 (2009)

    Article  ADS  Google Scholar 

  23. Thuy, N.T., LeMinh, D.: Size effect on the structural and magnetic properties of nanosized perovskite LaFeO3 prepared by different methods advances in materials science and engineering 380306 (2012)

  24. Toan, N.N., Saukko, S., Lantto, V.: Gas sensing with semiconducting perovskite oxide LaFeO3. Physica B 327, 279–282 (2003)

    Article  ADS  Google Scholar 

  25. Torrance, J.B., Lacorre, P., Nazzal, A.I., Ansaldo, E.J., Niedermayer, C.: Systematic study of insulator-metal transitions in perovskites RNiO3 (R = P r,Nd,Sm,Eu) due to closing of charge-transfer gap. Phys. Rev. B 45, 8209–8212 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. El-Dek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arman, M.M., Ahmed, M.A. & El-Dek, S.I. Role of A Cation Vacancy in the Exchange-Biased LaFeO3 Multiferroic Nanocrystals. J Supercond Nov Magn 31, 1867–1879 (2018). https://doi.org/10.1007/s10948-017-4401-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4401-1

Keywords

Navigation