Use of a Sigmoid Function to Describe Second Peak in Magnetization Loops

  • Denis Gokhfeld
Original Paper


Order-disorder transitions of a vortex lattice transfer type-II superconductors from a low critical current state to a high one. The similar transition between different current states can be caused by electromagnetic granularity. A sigmoid curve is proposed to describe the corresponding peak in a field dependence of the macroscopic critical density. Using the extended critical state model, analytic expressions are obtained for the field dependencies of the local critical current density, the depth of equilibrium surface region, and the macroscopic critical current density. The expressions are well fit to published data.


Peak effect Fishtail Magnetization Critical current Order-disorder transition Boltzmann function Extended critical state model Phase separation Type II superconductor 


  1. 1.
    Kierfeld, J., Vinokur, V.: Dislocations and the critical endpoint of the melting line of vortex line lattices. Phys. Rev. B 61, R14928 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    Chou, M.J., Horng, H.E.: The quasiorder-disorder phase transition and peak effect in MgB2 type-II superconducting materials and thin films. Ann. Phys. 19, 128 (2010)CrossRefzbMATHGoogle Scholar
  3. 3.
    Babich, I.M., Brandt, E.H., Mikitik, G.P., Zeldov, E.: Critical current in type-II superconductors near the order-disorder transition. Phys. Rev. B 81, 054517 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Zehetmayer, M.: How the vortex lattice of a superconductor becomes disordered: a study by scanning tunneling spectroscopy. Sci. Rep. 5, 9244 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    Gorbatsevich, A.A., Kopaev, Y.V., Tokatly, I.V.: Stratification and superconducting droplets in high-Tc superconductors. JETP Lett. 52, 95 (1990). [Pis’ma ZETF 52, 736 (1990)]ADSGoogle Scholar
  6. 6.
    Nagaev, E.L.: Phase separation in high-temperature superconductors and related magnetic systems. Phys. Usp. 38, 497–520 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    Kenzelmann, M.: Exotic magnetic states in Pauli-limited superconductors. Rep. Prog. Phys. 80, 034501 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Johansen, T.H., Koblischka, M.R., Bratsberg, H., Hetland, P.O.: Critical-state model with a secondary high-field peak in j c(B). Phys. Rev. B 56, 11273–11278 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    Chandran, M.: Field distribution in thin superconductors with secondary peak in magnetisation. Phys. C 304, 202–212 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    Chaddah, P., Roy, S.B., Chandran, M.: Inferring equilibrium magnetization from hysteretic M-H curves of type-II superconductors. Phys. Rev. B 59, 8440–8443 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    Ravikumar, G., Bhagwat, K.V., Sahni, V.C., Grover, A.K., Ramakrishnan, S., Bhattacharya, S.: Phenomenological model for history effects and metastability in weakly pinned superconductors. Phys. Rev. B 61, R6479–R6482 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    Inanir, F., Celebi, S.: Model calculations for the high-field peak of the fish-tail effect in the magnetostriction of type-II superconductors. J. Alloys Compd. 427, 1–4 (2007)CrossRefGoogle Scholar
  13. 13.
    Gokhfeld, D.M.: Secondary peak on asymmetric magnetization loop of type-II superconductors. J. Supercond. Novel Magn. 26, 281–283 (2013)CrossRefGoogle Scholar
  14. 14.
    Balaev, D.A., Gokhfeld, D.M., Popkov, S.I., Shaykhutdinov, K.A., Klinkova, L.A., Zherikhina, L.N., Tsvokhrebov, A.M.: Increase in the magnetization loop width in the Ba0.6 K 0.4BiO3 superconductor: possible manifestation of phase separation. JETP 118, 104–110 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Zablotskii, V.: Thermal partial vortex depinning and channel formation in type-II superconductors. Supercond. Sci Technol. 14, L25 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    Sukhareva, T.V., Finkel, V.A.: Phase transition in the vortex structure of granular YBa2Cu3O7−δ HTSCs in weak magnetic fields. JETP 107, 787–793 (2008)Google Scholar
  17. 17.
    Navarro-Verdugo, A.L., Goycoolea, F.M., Romero-Melendez, G., Higuera-Ciaparad, I., Argüelles-Monal, W.: A modified Boltzmann sigmoidal model for the phase transition of smart gels. Soft Matter 7, 5847 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Derevyanko, V.V., Sukhareva, T.V., Finkel, V.A.: Phase transitions and vortex structure evolution in two-level high-temperature granular superconductor YBa2Cu3O7−δ under temperature and magnetic field. Phys. Solid State 59, 1470–1478 (2017)Google Scholar
  19. 19.
    Clem, J.R.: A model for flux pinning in superconductors. LT-13, 102–106 (1974)Google Scholar
  20. 20.
    Burlachkov, L.: Magnetic relaxation over the Bean-Livingstone surface barrier. Phys. Rev. B 47, 8056–8064 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    Chen, D.X., Cross, R.W., Sanchez, A.: Effects of critical current density, equilibrium magnetization and surface barrier on magnetization of high temperature superconductors. Cryogenics 33, 695–703 (1992)ADSCrossRefGoogle Scholar
  22. 22.
    Gokhfeld, D.M., Balaev, D.A., Petrov, M.I., Popkov, S.I., Shaykhutdinov, K.A., Valkov, V.V.: Magnetization asymmetry of type-II superconductors in high magnetic fields. J. Appl. Phys. 109, 033904 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Gokhfeld, D.M., An, extended critical state model: Asymmetric magnetization loops and field dependence of the critical current of superconductors. Phys. Solid State 56, 2380–2386 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Altin, E., Gokhfeld, D.M., Kurt, F., Yakinci, M.E.: Physical, electrical, transport and magnetic properties of Nd(Ba,Nd)2.1Cu3O7−d system. J. Mater. Sci.: Mater. Electron. 24, 5075–5084 (2013)Google Scholar
  25. 25.
    Altin, E., Gokhfeld, D.M., Demirel, S., Oz, E., Kurt, F., Altin, S., Yakinci, M.E.: Vortex pinning and magnetic peak effect in Eu(Eu,Ba)2.125Cu3Ox. J. Mater. Sci.: Mater. Electron. 25, 1466–1473 (2014)Google Scholar
  26. 26.
    Gokhfeld, D.M., Semenov, S.V., Balaev, D.A., Yakimov, I.S., Dubrovskiy, A.A., Terentyev, K.Y. u., Freydman, A.L., Krasikov, A.A., Petrov, M.I.: Establishing of peak effect in YBCO by Nd substitution. JMMM 440, 127–128 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    Gokhfeld, D.M., Balaev, D.A., Yakimov, I.S., Petrov, M.I., Semenov, S.V.: Tuning the peak effect in the Y1−xNdxBa2 Cu3O7−δ compound. Ceram. Int. 43, 9985–9991 (2017)CrossRefGoogle Scholar
  28. 28.
    Küpfer, H., Apfelstedt, I., Flükiger, R., Keller, C., Meier-Hirmer, R., Runtsch, B., Turowski, A., Wiech, U., Wolf, T.: Intragrain junctions in YBa2Cu3O7−x ceramics and single crystals. Cryogenics 29, 268–280 (1989)ADSCrossRefGoogle Scholar
  29. 29.
    Galluzzi, A., Polichetti, M., Buchkov, K., Nazarova, E., Mancusi, D., Pace, S.: Evaluation of the intragrain critical current density in a multidomain FeSe crystal by means of dc magnetic measurements. Supercond. Sci. Technol. 28, 115005 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Kalisky, B., Shaulov, A., Yeshurun, Y.: Effects of sample size on the second magnetization peak in Bi2Sr2CaCuO8 + δ at low temperatures. Pramana – J. Phys. 66, 141–147 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    Krelaus, J., Hoffmann, J., Heinemann, K., Freyhardt, H.C.: A method to separate bulk and surface hysteresis contributions in HTSC powder by particle size classification and its application to Hg(Re)-1223. Phys. C 313, 21–28 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    Kim, Y.B., Hempstead, C.F., Strnad, A.R.: Critical persistent currents in hard superconductors. Phys. Rev. Lett. 9, 306 (1962)ADSCrossRefGoogle Scholar
  33. 33.
    Irie, F., Yamafuji, K.: Theory of flux motion in non-ideal type-II superconductors. J. Phys. Soc. Jpn. 23, 255–268 (1967)ADSCrossRefGoogle Scholar
  34. 34.
    Koblischka, M.R., Gokhfeld, D.M., Chang, C., Hauet, T., Hartmann, U.: Pinning force scaling of electrospun Bi-2212 nanowire networks. Solid State Commun. 264, 16–18 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    Kumar, G.R., Chaddah, P.: Extension of Bean’s model for high- t c superconductors. Phys. Rev. B 39, 4704–4707 (1989)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Kirensky Institute of PhysicsFederal Research Center KSC SB RASKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations