The Spin Wave Gap and Switching Field in Thin Films with In-Plane Anisotropy

Original Paper
  • 75 Downloads

Abstract

In this paper, we have calculated the spin wave gap and the angular dependence of magnetization reversal in a single-layer thin magnetic film that includes the strong perpendicular magnetic anisotropy and in-plane anisotropy. The film is assumed to be under the influence of the out-of-plane direction of the applied magnetic field at zero temperature. Using the quantum model, it is shown that the calculated equations present a nonzero spin wave gap at zero magnetic field which is strongly affected by anisotropies. The effects of the in-plane anisotropy and the role of the applied field were examined. We also discussed a simple theoretical model for the angular variation of switching field by using a quasi-classical argument. We used some constants in connection with experimental data which are reported for chromium telluride thin films grown by molecular beam epitaxy.

Keywords

Magnetic anisotropy Spin wave gap Switching field 

Notes

Acknowledgements

The authors thank Tanmoy Pramanik, from The University of Texas, for the experimental data of Cr2Te3.

References

  1. 1.
    Prinz, G.A.: Phys. Rev. Lett. 54, 1051 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    Krebs, J.J., Jonker, B.T., Prinz, G.A.: J. Appl. Phys. 61, 3744 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    Qiu, Z.Q., Pearson, J., Bader, S.D.: Phys. Rev. Lett. 70, 1006 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    Hu, X.: Phys. Rev. B 55, 8382 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    Roy, A., et al.: ACS NANO 9, 3772 (2015)CrossRefGoogle Scholar
  6. 6.
    Hillebrands, B.: Phys. Rev. B 41, 530 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    Krams, P., et al.: Phys. Rev. B 49, 3633 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    Politi, P., Rettori, A., Pini, M.G.: J. Magn. Magn. Mater. 113, 83 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    Garcia-Miquel, H., et al.: IEEE Trans. Magn. 37, 561 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Hong, J.: Phys. Rev. B 74, 172408 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Lüscher, A., Sushkov, O.P.: Phys. Rev. B 74, 064412 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Tacchi, S., et al.: Surf. Sci. 600, 4147 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Kachkachi, H., Schmool, D.S.: Eur. Phys. J. B 56, 27 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Golosovsky, I.V., et al.: J. Magn. Magn. Mater. 322, 664 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Pramanik, T, et al.: J. Magn. Magn. Mater. 437, 72 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Kramps, P., et al.: Phys. Rev. Lett. 69, 3674 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    Jackson, J.D.: Mathematics for Quantum Mechanics. Dover Publications, New York (2006)Google Scholar
  18. 18.
    Holstein, T., Primakoff, H.: Phys. Rev. 58, 1098 (1940)ADSCrossRefGoogle Scholar
  19. 19.
    Gasiorowicz, S.: Quantum Physics. Wiley, Hoboken (1974)MATHGoogle Scholar
  20. 20.
    Kittel, C.: Quantum Theory of Solids. Wiley, Hoboken (1987)MATHGoogle Scholar
  21. 21.
    Stoner, E.C., Wohlfarth, E.P.: Philos. Trans. R. Soc. London, Ser. A 240, 599 (1948)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Secondary Science and Mathematics EducationUniversity of MersinMersinTurkey

Personalised recommendations