Synthesis and Superconductivity of Ba2Ti2(Fe1−x Cr x )2As4O

  • C. C. Hsieh
  • C. Ke
  • C. H. Cheng
  • H. Zhang
  • Y. Zhao
Original Paper


Ba2Ti2(Fe1−x Cr x )2As4O (0 ≤ x ≤ 8%) compounds are synthesized by solid-state reaction and their structure and superconductivity are studied with x-ray diffraction, electric resistivity, and magnetization measurements. It is observed that the Cr dopants in the Fe site of Ba2Ti2Fe2As4O expand the lattice constants, but do not cause any structure phase transition. Superconducting transition temperature T c of the Ba2Ti2(Fe1−x Cr x )2As4O is found monotonically depressed with Cr doping level at an average depression rate of ΔT c /Cr − 1% = − 2.6 K. Meanwhile, the superconducting volume fraction is also significantly reduced, and the low-temperature resistivity is enhanced. It is believed that the Cr dopants work as pair-breaking impurities, which take responsibility for the depression of superconductivity in the system.


Solid-state reaction Iron-based pnictide Electrical resistivity Magnetic magnetization Superconductivity 



The authors are grateful for the helpful discussion with Miss L. Zhao.


The authors are grateful for the financial support of the National Natural Science Foundation of China (Grant No. 51377138). C. Ke is also grateful for the financial support of the Li Jinsheng Scholarship of Superconductivity and New Energy R&D Center.


  1. 1.
    Kamihara, Y., Hiramatsu, H., Hirano, M., Kawamura, R., Yanagi, H., Kamiya, T., Hosono, H.: Iron-based layered superconductor. LaOFeP. J. Am. Chem. Soc. 128, 10012–10014 (2006)CrossRefGoogle Scholar
  2. 2.
    Hsu, F.C., Luo, J.Y., Yeh, K.W., Chen, T.K., Huang, T.W., Wu, P.M., Lee, Y.C., Huang, Y.L., Chu, Y.Y., Yan, D.C., Wu, M.K.: Superconductivity in the PbO-type structure α-FeSe. PNAS 105, 14262–14264 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Wang, X.C., Liu, Q.Q., Lv, Y.X., Gao, W.B., Yang, L.X., Yu, R.C., Li, F.Y., Jin, C.Q.: The superconductivity at 18 K in LiFeAs system. Solid State Commun. 148, 538–542 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Rotter, M., Tegel, M., Johrendt, D.: Superconductivity at 38 K in the iron arsenide (Ba1−xKx)Fe2As2. Phys. Rev. Lett. 101, 107006 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Guo, J., Jin, S., Wang, G., Wang, S., Zhu, K., Zhou, T., He, M., Chen, X.: Superconductivity in the iron selenide KxFe2Se2 (0 <= x <= 1.0). Phys. Rev. B 82, 180520(R) (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Sefat, A.S., Jin, R.Y., McGuire, M.A., Sales, B.C., Singh, D.J., Mandrus, D.: Superconductivity at 22 K in Co-doped BaFe2As2 crystals. Phys. Rev. Lett. 101, 117004 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Sun, Y.L., Jiang, H., Zhai, H.F., Bao, J.K., Jiao, W.H., Tao, Q., Shen, C.Y., Zeng, Y.W., Xu, Z.A., Cao, G.H.: Ba2Ti2Fe2As4O: a new superconductor containing Fe2As2 layers and Ti2O sheets. J. Am. Chem. Soc. 134, 12893–12896 (2012)CrossRefGoogle Scholar
  8. 8.
    Wang, X.F., Yan, Y.J., Ying, J.J., Li, Q.J., Zhang, M., Xu, N., Chen, X.H.: Structure and physical properties for a new layered pnictide-oxide: BaTi2As2O. J. Phys.: Condens. Matter 22, 075702 (2010)ADSGoogle Scholar
  9. 9.
    Wu, S.F., Richard, P., Zhang, W.L., Lian, C.S., Sun, Y.L., Cao, G.H., Wang, J.T., Ding, H.: Raman scattering investigation of superconducting Ba2Ti2Fe2As4O. Phys. Rev. B 89, 134522 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Wang, H.P., Sun, Y.L., Wang, X.B., Huang, Y., Dong, T., Chen, R.Y., Cao, G.H., Wang, N.L.: Coexistence of superconductivity and density wave in Ba2Ti2Fe2As4O: an optical spectroscopy study. Phys. Rev. B 89, 144508 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Zbiri, M., Jin, W.T., Xiao, Y.G., Sun, Y.L., Su, Y.X., Demirdis, S., Cao, G.H.: Absence of magnetism in the superconductor Ba2Ti2Fe2As4O: insights from inelastic neutron scattering measurements and ab initio calculations of phonon spectra. Phys. Rev. B 95, 174301 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Ma, J.Z., van Roekeghem, A., Richard, P., Liu, Z.H., Miao, H., Zeng, L.K., Xu, N., Shi, M., Cao, C., He, J.B., Chen, G.F., Sun, Y.L., Cao, G.H., Wang, S.C., Biermann, S., Qian, T., Ding, H.: Correlation-induced self-doping in the iron-pnictide superconductor Ba2Ti2Fe2As4O. Phys. Rev. Lett. 113, 266407 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Yoon, S.J., Seo, Y.S., Lee, S.B., Weiss, J.D., Jiang, J.Y., Oh, M.J., Lee, J.M., Seo, S.H., Jo, Y.J., Hellstrom, E.E., Hwang, J.S., Lee, S.H.: Structural, electro-magnetic, and optical properties of Ba(fe,Ni)2As2 single-crystal thin film. Supercond. Sci. Technol. 30, 035001 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    Sefat, A.S., Singh, D.J., Van Bebber, L.H., Mozharivskyj, Y., McGuire, M.A., Jin, R.Y., Sales, B.C., Keppens, V., Mandrus, D.: Absence of superconductivity in hole-doped BaFe2−xCrxAs2 single crystals. Phys. Rev. B 79, 224524 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Uhoya, W.O., Montgomery, J.M., Samudrala, G.K., Tsoi, G.M., Vohra, Y.K., Weir, S.T., Sefat, A.S.: High-pressure structural phase transitions in chromium doped BaFe2As2. J. Phys.: Conf. Series 377, 012016 (2012)Google Scholar
  16. 16.
    Ji, Q.C., Ma, Y.H., Hu, K.K., Gao, B., Mu, G., Li, W., Hu, T., Zhang, G.H., Zhao, Q.B., Zhang, H., Huang, F.Q., Xie, X.M.: Synthesis, structural, and transport properties of cr-doped BaTi2As2O. Inorg. Chem. 53, 13089–13092 (2014)CrossRefGoogle Scholar
  17. 17.
    Ablimit, A., Sun, Y.L., Jiang, H., Bao, J.K., Zhai, H.F., Tang, Z.T., Liu, Y., Wang, Z.C., Feng, C.M., Cao, G.H.: Synthesis, crystal structure and physical properties of a new oxypnictide Ba2Ti2Cr2As4O containing [Ti2As2O]2− and [Cr2As2]2− layers. J. Alloys Compd. 694, 1149–1153 (2017)CrossRefGoogle Scholar
  18. 18.
    Singh, D.J., Sefat, A.S., McGuire, M.A., Sales, B.C., Mandrus, D.: Itinerant antiferromagnetism in BaCr2As2: experimental characterization and electronic structure calculations. Phys. Rev. B 79, 094429 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Zhang, R., Gong, D.L., Lu, X.Y., Li, S.L., Laver, M., Niedermayer, C., Danilkin, S., Deng, G.C., Dai, P.C., Luo, H.Q.: Doping evolution of antiferromagnetism and transport properties in nonsuperconducting BaFe2 − 2xNixCrxAs2. Phys. Rev. B 91, 094506 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Zhang, R., Gong, D.L., Lu, X.Y., Li, S.L., Dai, P.C., Luo, H.Q.: The effect of Cr impurity to superconductivity in electron-doped BaFe2−xNixAs2. Supercond. Sci. Technol. 27, 115003 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Axnas, J., Holm, W., Eltsev, Y., Rapp, O.: Increased phase-breaking scattering rate in Zn-doped YBa2Cu3O7−δ. Phys. Rev. B 53, R3003–R3006 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    Xu, Y.H., Ata-Allah, S.S., Berger, M.G., Gluck, O.: Rare-earth ion size effect on resistivity, susceptibility, and superconductivity of r Ba2Cu3−xZnxO7−y (r = Yb, Er, Y, Dy, Gd, Eu, Sm, and Nd). Phys. Rev. B 53, 15245–15253 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    Fukuzumi, Y., Mizuhashi, K., Takenaka, K., Uchida, S.: Universal superconductor-insulater transition and t c depression in Zn-substituted high- t c cuprates in the underdoped regime. Phys. Rev. Lett. 76, 684–687 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    Marty, K., Christianson, A.D., Wang, C.H., Matsuda, M., Cao, H., VanBebber, L.H., Zarestky, J.L., Singh, D.J., Sefat, A.S., Lumsden, M.D.: Competing magnetic ground states in nonsuperconducting Ba(Fe1−xCrx)2As2 as seen via neutron diffraction. Phys. Rev. B 83, 060509(R) (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Key Laboratory of Levitation Technology and Maglev (Ministry of Education of China), Superconductivity R&D Center (SRDC)Southwest Jiaotong UniversityChengduChina
  2. 2.School of Materials Science and EngineeringUniversity of New South WalesSydneyAustralia
  3. 3.School of PhysicsPeking UniversityBeijingChina
  4. 4.School of Physical Science and TechnologySouthwest Jiaotong UniversityChengduChina

Personalised recommendations