Advertisement

Effect of the Ce Content on the Magnetic Properties and Microstructure of CeCo5-based Sintered Bulk Magnets

  • Wei Sun
  • Kui-kui Song
  • Ming-gang Zhu
  • Yi-kun Fang
  • Neng-jun Yu
  • Shuai Wang
  • Wei Li
Original Paper
  • 48 Downloads

Abstract

CeCo5-based magnets have recently attracted much attention due to their moderate magnetic performance and low cost. Nevertheless, there have been few studies on the effects of Ce content on the magnetic properties and microstructures of CeCo5-based magnets. In response to this, the magnetic properties of sintered bulk magnets with nominal compositions of Ce(Co0.73Cu0.135Fe0.135) z (z = 4.95, 5.15, 5.35, and 5.55), prepared by the conventional powder metallurgy method, were investigated here. Based on experimental findings, it was shown that Ce(Co0.73Cu0.135Fe0.135)5.15 sintered bulk magnets had comprehensive magnetic properties—maximum energy product of 80 kJ m− 3 (10 MGOe) and intrinsic coercivity (H cj) of 452 kA m− 1 (5.69 kOe)—superior to those previously reported by us. For z = 5.35 and 5.55, due to the presence of the minor Ce2Co17 phase (which has a Curie temperature (T c ) < 20 °C), magnets had low H cj values. Based on x-ray diffraction and scanning electron microscopy observations, it was suggested that the volume fraction of the 1:5 matrix phase was the main factor determining the H cj of CeCo5-based sintered bulk magnets obtained with different Ce contents. Furthermore, the importance of the dispersion characteristics of the Ce2O3 phase within the matrix was emphasized. Uniform dispersion of the Ce2O3 phase can significantly improve the overall magnetic performance of CeCo5-based magnets.

Keywords

Magnetic properties Microstructure Sintered magnets Powder metallurgy CeCo5-based magnets 

Notes

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing and publication support.

Funding

This study was funded by the National Basic Research Program of China (973 Program) (grant number 2014CB643701) and the National Natural Science Foundation of China (grant numbers 51371054 and 51171049).

Compliance with Ethical Standards

This article does not contain any studies with humans or animals subjects performed by any of the authors.

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. 1.
    Wang, X., Zhu, M., Li, W., Zheng, L., Zhao, D., Du, X., Du, A.: The microstructure and magnetic properties of melt-spun CeFeB ribbons with varying Ce content Electron. Mater. Lett. 11, 109–112 (2015)Google Scholar
  2. 2.
    Yang, L., Bi, M., Jiang, J., Ding, X., Zhu, M., Li, W., Lv, Z., Song, Z.: Effect of cerium on the corrosion behaviour of sintered (Nd,Ce)FeB magnet. J. Magn. Magn. Mater. 432, 181–189 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    Huang, S., Feng, H., Zhu, M., Li, A., Zhang, Y., Li, W.: Investigation of chemical composition and crystal structure in sintered Ce15Nd15Febal B 1 magnet. AIP Adv. 4, 107127 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Zhu, M., Li, W., Wang, J., Zheng, L., Li, Y., Zhang, K., Feng, H, Liu, T.: Influence of Ce content on the rectangularity of demagnetization curves and magnetic properties of Re-Fe-B magnets sintered by double main phase alloy method. IEEE Trans. Magn. 50, 1000104 (2014)Google Scholar
  5. 5.
    Strnat, K J, Strnat, RM.W.: Rare earth-cobalt permanent magnets. J. Magn. Magn. Mater. 100, 38–56 (1991)ADSCrossRefGoogle Scholar
  6. 6.
    Witold, S.: Studies of the domain structure of anisotropic sintered SmCo5 permanent magnets. J. Magn. Magn. Mater. 311, 469–480 (2007)CrossRefGoogle Scholar
  7. 7.
    Long, L., Wenyong, Z., Yuqing, Z., Jianqi, L., Baogen, S., Jian, Z.: Structural properties of magnetically anisotropic SmCo5 ribbons. Appl. Phys. Lett. 80, 2660–2662 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Jahn, L., Ivanov, V., Schumann, R., Loewenhaupt, M.: Influence of the initial temperature on the thermal remagnetization of SmCo5 sintered magnets. J. Magn. Magn. Mater. 256, 41–45 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Sun, W., Zhu, M., Fang, Y., Pan, W., Li, J., Li, Y., Li, W.: Microstructures and magnetic properties of Ce32.15 Co49.36Cu9.84 Fe9.65 magnet sintered at different temperatures. Rare Met. 31, 470–473 (2012)CrossRefGoogle Scholar
  10. 10.
    Sun, W., Zhu, M., Fang, Y., Pan, W., Xia, M., Li, W.: Microstructure and magnetic properties of sintered CeCo4.3252−xCu0.675Fex magnets. Rare Met. 34, 164–167 (2015)CrossRefGoogle Scholar
  11. 11.
    Bartashevich, M.I., Goto, T., Radwanski, R.J., Korolyov, A.V.: Magnetic anisotropy and high-field magnetization process of CeCo5. J. Magn. Magn. Mater. 131, 61–66 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    Higuchi, A.: Rare earth permanent magnets. Mater. Chem. Phys. 31, 51–55 (1992)CrossRefGoogle Scholar
  13. 13.
    Ma, B.M., Liu, W.L., Liang, Y.L., Scott, D.W., Bounds, C.O.: Comparison of the improvement of thermal stability of NdFeB sintered magnets: intrinsic and/or microstructural. J. Appl. Phys. 75, 6628–6630 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    Strnat, K., Hoffer, G., Olson, J., Ostertag, W., Becker, J.J.: A family of new cobalt-base permanent magnet materials. J. Appl. Phys. 38, 1001–1002 (1967)ADSCrossRefGoogle Scholar
  15. 15.
    Jin, S., Brason, D., Mahajan, S.: Coercivity mechanisms in Fe-Cr-Co magnet alloys. J. Appl. Phys. 53, 4300–4303 (1982)ADSCrossRefGoogle Scholar
  16. 16.
    Inomata, K., Oshima, T., Ido, T., Yamada, M.: Sintered Ce-Co-Cu-Fe-Ti magnets. Appl. Phys. Lett. 30, 669–670 (1977)ADSCrossRefGoogle Scholar
  17. 17.
    Treves, D., Jacobs, J.T., Sawatzky, E.: Platinum-cobalt films for digital magneto-optic recording. J. Appl. Phys. 46, 2760–2765 (1975)ADSCrossRefGoogle Scholar
  18. 18.
    Sun, W., Zhu, M., Guo, Z., Fang, Y., Li, W.: The coercivity mechanism of sintered Sm(CobalFe0.245Cu0.07Zr0.02)7.8 permanent magnets with different isothermal annealing time. Physica B 476, 154–157 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Sun, W., Zhu, M., Fang, Y., Liu, Z., Chen, H., Guo, Z., Li, W.: Magnetic properties and microstructures of high-performance Sm2Co17 based alloy. J. Magn. Magn. Mater. 378, 214–216 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Sun, W., Zhu, M., Fang, Y., Liu, Z., Guo, Z., Li, W.: Microstructures and coercivity mechanism of 2:17-type Sm-Co magnets with high remanence. Rare Met.  https://doi.org/10.1007/s12598-015-0513-6 (2015)
  21. 21.
    Sun, W., Zhu, M., Fang, Y., Guo, Z., Li, W.: Microstructures and magnetic properties of Sm(CobalFe0.245Cu0.07Zr0.02)7.8 sintered magnet solution-treated at high temperature. Rare Met.  https://doi.org/10.1007/s12598-016-0813-5 (2016)
  22. 22.
    Senno, H., Tawara, Y.: Permanent-magnet properties of Sm-Ce-Co-Fe-Cu alloys with compositions between 1-5 and 2-17. IEEE Trans. Magn. 10, 313–317 (1974)ADSCrossRefGoogle Scholar
  23. 23.
    Fan, Y.K., Chang, H.W., Guo, Z.H., Liu, T., Li, X.M., Li, W., Chang, W.C., Han, B.S.: Magnetic microstructures of phase-separated Sm–Co 2:17-type sintered magnets. J. Alloys Compd. 462, 376–380 (2008)CrossRefGoogle Scholar
  24. 24.
    Khan, Y.: The crystal structure of R5Co19. Acta Crystallogr., Sect. B: Struct. Sci. 30, 1533–1537 (1974)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Wei Sun
    • 1
    • 2
    • 3
  • Kui-kui Song
    • 1
    • 2
  • Ming-gang Zhu
    • 1
    • 2
  • Yi-kun Fang
    • 1
    • 2
  • Neng-jun Yu
    • 1
    • 2
  • Shuai Wang
    • 1
    • 2
  • Wei Li
    • 1
    • 2
  1. 1.Functional Materials Research InstituteCentral Iron & Steel Research InstituteBeijingChina
  2. 2.Beijing Engineering Laboratory of Advanced Metallic Magnetic Materials and Preparation TechniquesBeijingChina
  3. 3.National Engineering Research Center for Magnetic MaterialsBeijingChina

Personalised recommendations