Advertisement

Structural, Magnetic, and Optoelectronic Properties of CuMnSe2-Chalcopyrite: DFT + U and Hybrid Functional Investigation

  • B. Djebour
  • H. Bouafia
  • B. Sahli
  • S. Hiadsi
  • B. Abidri
Original Paper

Abstract

The work presented in this manuscript is a study of structural, magnetic, and optoelectronic properties of CuMnSe2-chalcopyrite by FP-(L)APW + lo method using semilocal and hybrid functional. Structural properties such as cell parameters, bulk modulus, and its pressure derivative, as well as the cohesive energy and total energy of the unit cell were determined for the three magnetic phases (AFM, FM, and NM) from which it has been found that CuMnSe2-chalcopyrite is ferromagnetic. The studied elastic properties confirm the mechanical stability of CuMnSe2 in its chalcopyrite structure. Electronic properties, such as the band gap energy, density of states, and charge density, and magnetic properties, such as Hubbard term estimation, magnetic moment, and polarization of the CuMnSe2, have been predicted by several methods (GGA-PBEsol + U eff, GGA-PBEsol_(mBJ) + U eff, and hybrid functional). Optical properties such as the analysis of the dielectric function and the prediction of the refractive index and birefringence variations were also studied.

Keywords

CuMnSe2 Semilocal and hybrid functional Mechanical stability Magnetic properties Optoelectronic properties 

Notes

Acknowledgments

The author H. Bouafia kindly acknowledges Mr. Kamel Hassaine for his help and support.

References

  1. 1.
    Huang, H.M., Luo, S.J., Yao, K.L.: J. Supercond. Nov. Magn. 27, 257–261 (2014)CrossRefGoogle Scholar
  2. 2.
    Asubar, J.T., et al.: J. Cryst. Growth 311, 929–932 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Tao, H., Dongwei, L.: Biotechnol. Rep. 4, 107–119 (2014)CrossRefGoogle Scholar
  4. 4.
    Kumar, V., et al.: Comput. Mater. Sci. 87, 227–231 (2014)CrossRefGoogle Scholar
  5. 5.
    Abou-Ras, D., et al.: Thin Solid Films (2017),  https://doi.org/10.1016/j.tsf.2017.01.005
  6. 6.
    Kamatani, T., Akai, H.: J. Supercond. Incorpor. Novel Magn. 16, 1 (2003)Google Scholar
  7. 7.
    Lyubutin, I.S., et al.: Acta Mater. 61, 3956–3962 (2013)CrossRefGoogle Scholar
  8. 8.
    Kocak, B., Ciftci, Y.O.: J. Alloys Compd. 705, 211–217 (2017)CrossRefGoogle Scholar
  9. 9.
    Xiao, J., et al.: Comput. Mater. Sci. 117, 472–477 (2016)CrossRefGoogle Scholar
  10. 10.
    Krc, J., et al.: Thin Solid Films (2016)  https://doi.org/10.1016/j.tsf.2016.08.056
  11. 11.
    Tablero, C.: Chem. Phys. Lett. 499, 75–78 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Sibghat-ullah, et al.: Mater. Sci. Semicond. Process. 26, 79–86 (2014)CrossRefGoogle Scholar
  13. 13.
    Hasanli, S.M., et al.: Semiconductors 48, 417–422 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Zhao, Y.-J., Freeman, A.J.: J. Magn. Magn. Mater. 246, 145–150 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    Delgado, G.E., Villegas, J.L., Silva, P., Sagredoc, V.: Chalcogenide Lett. 6, 293–298 (2009)Google Scholar
  16. 16.
    Madsen, G.K.H., Blaha, P., Schwarz, K., Sjöstedt, E., Nordström, L.: Phys. Rev. B 64, 195134 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    Schwarz, K., Blaha, P., Madsen, G.K.H.: Comput. Phys. Commun. 147, 71 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., Luitz, J.: WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties (Karlheinz Schwarz, Techn. Universität Wien, Austria), 2001. ISBN 3-9501031-1-2Google Scholar
  19. 19.
    Blaha, P., Schwarz, K., Sorantin, P., Trickey, S.K.: Comput. Phys. Commun. 59, 339 (1990)CrossRefGoogle Scholar
  20. 20.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K.: Phys. Rev. Lett. 100, 136406 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Tran, F., Blaha, P.: Phys. Rev. Lett. 102, 226401(1)–226401(4) (2009)ADSGoogle Scholar
  23. 23.
    Koller, D., Blaha, P., Tran, F.: J. Phys.: Condens. Matter 25, 435503 (2013)ADSGoogle Scholar
  24. 24.
    Tran, F., Blaha, P., Betzinger, M., Blügel, S.: Phys. Rev. B 91, 165121 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Khan, W., Betzler, S., Sipr, O., Ciston, J., Blaha, P., Scheu, C., Minar, J.: J. Phys. Chem. C 120(41), 23329–23338 (2016)CrossRefGoogle Scholar
  26. 26.
    Blochl, P., Jepsen, O., Andersen, O.K.: Phys. Rev. B 49, 16223 (1994)ADSCrossRefGoogle Scholar
  27. 27.
    Csonka, G.I., Perdew, J.P., et al.: Phys. Rev. B 79, 155107 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Sahli, B., et al.: J. Alloys Compd. 635, 163–172 (2015)CrossRefGoogle Scholar
  29. 29.
    Murnaghan, F.D.: Prot. Natl. Acad. Sci. USA. 30, 244 (1944)ADSCrossRefGoogle Scholar
  30. 30.
    Yakoubi, A., et al.: Results Phys. 2, 58–65 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Wei, S.-H., Zunger, A.: Phys. Rev. B 35, 2340 (1987)ADSCrossRefGoogle Scholar
  32. 32.
    Kerroum, D., et al.: Optik 139, 315–327 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    Wallace, D.C.: Thermodynamics of Crystals. Willey, New York (1972)Google Scholar
  34. 34.
    Manjon, F.J., Tiginyanu, I., Ursaki, V. (eds.): Pressure-induced phase transitions in AB2X4 chalcogenide compounds. Springer Series in Materials Science, Berlin (189)Google Scholar
  35. 35.
    Singh, P., Sharma, S., Kumari, S., et al.: Semiconductors 51, 679 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    Reshak, A.H., Jamal, M.: Int. J. Electrochem. Sci. 8 (2013)Google Scholar
  37. 37.
    IRelast package provided by Jamal M. as a part of the commercial Code Wien2k, http://www.wien2k.at/ (2016)
  38. 38.
    Wróbel, J., et al.: J. Alloys Compd. 512, 296–310 (2012)CrossRefGoogle Scholar
  39. 39.
    Bouafia, H., et al.: Comput. Mater. Sci. 75, 1–8 (2013)CrossRefGoogle Scholar
  40. 40.
    Voigt, W.: Lehrbuch der Kristallphysik. Teubner, Leipzig (1928)zbMATHGoogle Scholar
  41. 41.
    Shein, I.R., Ivanovskii, A.L.: Scr. Mater. 59, 1099 (2008)CrossRefGoogle Scholar
  42. 42.
    Reuss, A., Angew, Z.: Math. Mech. 8, 55 (1929)Google Scholar
  43. 43.
    Hill, R.: Proc. Phys. Soc. London A 65, 349 (1952)ADSCrossRefGoogle Scholar
  44. 44.
    Sharma, S., et al.: Comput. Mater. Sci. 86, 108–117 (2014)CrossRefGoogle Scholar
  45. 45.
    Rahman, M.A., et al.: Comput. Cond. Matter 9, 19–26 (2016)CrossRefGoogle Scholar
  46. 46.
    Pugh, S.F.: Philo. Mag. 45, 823 (1954)CrossRefGoogle Scholar
  47. 47.
    Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J., Sutton, A.P.: Phys. Rev. B 57, 1505 (1998)ADSCrossRefGoogle Scholar
  48. 48.
    Anisimov, V.I., Zaanen, J., Andersen, O.K.: Phys. Rev. B 44, 943 (1991)ADSCrossRefGoogle Scholar
  49. 49.
    Anisimov, V.I., Aryasetiawan, F., Lichtenstein, A.I.: J. Phys.: Condens. Matter 9, 767 (1997)ADSGoogle Scholar
  50. 50.
    Tran, F., Blaha, P., Schwarz, K.: Phys. Rev. B 74, 155108 (2006)ADSCrossRefGoogle Scholar
  51. 51.
    Amine, M.E., Monir, et al.: J. Magn. Magn. Mater. 374, 50–60 (2015)ADSCrossRefGoogle Scholar
  52. 52.
    Madsen, G.K.H., Novák, P.: Europhys. Lett. 69, 777 (2005)ADSCrossRefGoogle Scholar
  53. 53.
    Anisimov, V.I., Gunnarsson, O.: Phys. Rev. B 43, 7570 (1991)ADSCrossRefGoogle Scholar
  54. 54.
    Spiel, C., Blaha, P., Schwarz, K.: Phys. Rev. B 79, 115123 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    Dufek, P., Blaha, P., Schwarz, K.: Phys. Rev. B 50, 7279 (1994)ADSCrossRefGoogle Scholar
  56. 56.
    Engel, E., Vosko, S.H.: Phys. Rev. B 47, 13164 (1993)ADSCrossRefGoogle Scholar
  57. 57.
    Fahy, S., Chang, K.J., Louis, S.G., Cohen, M.L.: Phys. Rev. B 35, 7840 (1989)Google Scholar
  58. 58.
    Picozzi, S., et al.: Phys. Rev. B 66, 205206 (2002)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    Thangavel, R., et al.: Physica B 403, 2768–2772 (2008)ADSCrossRefGoogle Scholar
  60. 60.
    Hamri, B., et al.: Comput. Cond. Matter 3, 14–20 (2015)CrossRefGoogle Scholar
  61. 61.
    Coey, J.M., Chien, C.: MRS Bull. 28, 720 (2003)CrossRefGoogle Scholar
  62. 62.
    Pickett, WE., Eschrig, H.: J. Phys.: Condens. Matter 19, 315203 (2007)ADSGoogle Scholar
  63. 63.
    Pauling, L.: The nature of chemical bond. Cornell University Press, Ithaca (1960)zbMATHGoogle Scholar
  64. 64.
    Smith, N.V.: Phys. Rev. B 3, 1862 (1971)ADSCrossRefGoogle Scholar
  65. 65.
    Ehrenreich, H., Philips, H.R.: Phys. Rev. 128, 1622 (1962)ADSCrossRefGoogle Scholar
  66. 66.
    Wooten, F.: Optical Properties of Solids. Academic, New York (1972)Google Scholar
  67. 67.
    Reshak, A.H., Auluck, S., Kityk, I.V.: J. Solid State Chem. 181, 789 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Laboratoire de Microscope Electronique et Sciences des Matériaux, Département de Génie PhysiqueUniversité des Sciences et de la Technologie Mohamed BoudiafOranAlgeria
  2. 2.Laboratoire de Génie PhysiqueUniversité Ibn KhaldounTiaretAlgeria
  3. 3.Département des Sciences et de la Technologie, Faculté des Sciences AppliquéesUniversité Ibn KhaldounTiaretAlgeria
  4. 4.Laboratoire des Matériaux MagnétiquesUniversité Djillali LiabésSidi Bel AbbèsAlgeria

Personalised recommendations